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QUALITATIVE SIMULATION:
A FOCUS ON AIR TRAFFIC CONTROL

A. Gerstenfeld*
Y. Pan**

ABSTRACT ;.

Conventional mathematical algorithms for aiding air

traffic control have been suggested by previous reasearchers

,I ,2] However, the use of purely numerical

representations and manipulations obscures the necessary

"elegance" and heuristics needed in air traffic control. In

fact it has been stated that no two controllers would handle

z probler, in the same way.

As an alternative to conventional algorithmic methods,

other previous research has investigated the use of

Knowledge-Based System technology [3,4,5,]. Most

knowledge-based systems are usually developed in LISP ,
-.%

* A. Gerstenfeld received his Ph.D. from MIT and currently
holds an Endowed Chair at Worcester Polytechnic Institute.
He has written four books and more than 30 articles which
have appeared in academic journals.

**Y. Pan is currently a Senior Research Scientist at
Worcester Polytechnic Institute. He was formerly with the
Laboratory of Information and Decision Systems, MIT in
1981-1983 and Director of Automation with Shenyang Institute
of Automation, Chinese Academy of Sciences in 1962-1980;
1983-1985.
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however, the speed at which LISP machines can solve problems

is often not sufficient. One solution to this problem is to

optimize the LISP code for execution speed by using

conventional algorithm techniques for parts of the system. * .

This can be done in "C" and through a LISP/C interface , ..

achieve "the best of all possible worlds."

As pointed out at the 1986 AAAI conference [6]

traditional algorithmic computer programs based on detailed

mathematical models, yield the most accurate results but

require large amounts of process data and lona computational

times. Furthermore, quantative predictions can be

undersirable as insightful concepts are qualitative in

nature. Human experts are able to make accurate qualitative

predictions of the consequences of their control actions. A

basic challenge in all qualitative simulation methods is to

reduce the ambiguities.

Part of our approach is to use a frame hierarchy.
Minsky points out, [7] that this method allows the -.

programmer to associate methods with objects which are

inherited. lt is not surprising that languages are being

developed to express both the dynamic knowledge of discrete

events and the declarative knowledge of AI frame paradigms

[8]. The initial training for air traffic control takes
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place at the FAA Academy in Oklahoma City. Following that,

approximately four years is spent in training at a control

center. The training is a combination of on-the-job and

supervised practice on a dynamic simulator (DYSIM). The

later form of learning involves understanding the advise of

an expert. As one observes the latest developments in the

areas of simulation methodology, simulation language,

computer graphics, computer hardware, and expert system

research, it is impossible to escape the conclusion that'. ".

Al-based expert simulations will soon be available to'

perform the tasks we previously believed could only be done

by humans. The direction of innovations are changing and as

described by Gerstenfeld in several previous articles, "I-A

future successful innovations will be systems innovations

., [9,10,11,].-.-.,

Tht -ystem we describe in this paper was written in

LISP and uuilt on an IBM/AT with extended memory and a high

resolution color monitor. We originally figured on using an

artificial intelligence shell, but were not able to obtain

C_ the results we wanted in that way. We, therefore, reached

"' the conclusion that it would be best to write the program in

LISr for the intelligence portion and in C for the -,

simulation program.

.'. ,'-"-"--

What we described in this paper is a six month research

program where we first started off with interviews from air

traffic controllers from Logan Airport in Boston,

m~w, . Ym -. @" ...J, _, ... *-..- ._ .- _ ','.-' .,.-.' 5,_, ** f- L' Z'..' * 
m - -
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Massachusetts. In the initial interviews we realized that

we were trying to capture too much in the beginning and

would ask the controller to describe the decision process

with a series of planes approaching Logan Airport. However,

so much information goes into a decision of delaying a plane

or rerouting a plane (or simply sequencing a plane) that is

far beyond the realization of the air traffic controller.

He simply does it by instinct after his many years of

training.

Our over-riding principle was to keep thinking of the

problem as a manufacturing queing problem. Previous

research has been done by one of the coauthors of this paper

(Y. Pan) on manufacturing queing [123. Instead of parts

arrivinc at machines at certain times, we have planes

arriving at an approach path at certain times.

Durina our research we were urged by the FAA to

consider this system as a training tool for air traffic

controllers. They suggested we go in this direction because

the idea of an automated data link which would essentially

replace' the decisions of an air traffic controller did not
40- -

seem feasible at this time. We agreed with them. However,

the expectation is that as this work continues and as we

start tc add sophistication to the intelligent simulator

after a period of years it will then start to be considered 2% -.

as an aid to air traffic controllers.

. °' - °•
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We have shown in our paper the feasibility of using an

expert system for training air traffic controllers. The

problem is indeed complex, however the need is significant 44

and justifies the effort that would be entailed in going

further with this research. We have shown that when two

aircraft approach a decision point that we can have the ::
computer make a decision (because it has received the expert

V advice of an air traffic controller) identically to the way0

the air traffic controller would make the decision.

Th etse fth eerhsoldb oadmr

Thiee next rstepr of ld the reerhvsould beeatocaddoei

the areE of automated air traffic control and takes a next

step forward. As air traffic continues to expand we believe

the need is there for improved training through the use of

oua'iitative simulation. *

-67-
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ABSTRACT:

KNOWLEDGE ENGINEERING IN AVIONIC APPLICATIONS
One approach for obtaining expert system knowledge for a

large-scale effort has been to employ automated simulated

environments. A knowledge-based simulation tool can assist

knowledge acquisition for expert system development in avionic

applications. The performance of an expert system ultimately

depends upon the quantity and quality of the domain specific '

knowledge available to it. Many of the situations encountered in

* building expert systems for avionic applications cannot be

addressed by a single expert. The design of avionic

P. 0. Bx 74 .....

knowledge-based systems for automation of mission applications

presents unique opportunities to a knowledge engineer in obtaining

information from multiple sources of expertise. This paper will

provide a perspective of knowledge engineering approaches employing

a knowledge-based simulation tool. This tool is then applied in

i ABSTRCT : ,.:,.vu

knowledge acquisition from those multiple sources for a specific

design, for example, an expert system for threat assessment.

.. .. .. .

- . . .- U-...*.:._-_

Suh n..ini application ilutaehe diversmanc of expertise liatl -...

thatdrest be mege sin drt bidaefcie expert systeim.favonc 5
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Expertise is needed from avionic systems engineers, aircrews,

tacticians, and mission (scenario) planners. Each of these
.. ", "

specialities- provides a necessary but different perspective of the - -

problem domain. Therefore, in order to interface with those

specialists, a simulation environment can provide a means of

overcoming some of the difficulties encountered by lack of common

perspective during expert system development. In order to be most : .

effective, the simulation must be representative of the expert' s

domain, as well as flexible, easily and rapidly changed, and highly , ,

interactive. A knowledge-based approach is needed in the design

and implementation of this type of simulation tool.

In addition to providing a common perspective for experts from

diverse backgrounds, the knowledge-based simulation tool can

support a variety of dynamic and flexible scenarios to be created

and tested. Some mission applications such as aircraft maneuvers

can only be addressed via simulation. Others include those

situations for which there is no established expertise and a

knowledge engineer must draw on somewhat similar experiences and/or -'

impressions of the expert. An example of the latter would be the , ...'--

development of an avionic expert system for a new future

aircraft where tactics are not yet defined. Knowledge-based

simulation tools facilitate not only knowledge acquisition

methodology for expert system development but could also provide a

means of actually developing the requisite expertise.

~ 4
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ABSTRACT FOR WORKSHOP ON Al AND SIMULATION.-"

CLAIRE D. MEIER

Boeing Artificial Intelligence Center
Boeing Computer Services
P.O. Box 24346, MS 7J-64
Seattle, Washington 98124
(206) 865- 3293

I was a member of a five person team that designed, implemented, and
demonstrated in December 1985 a simulation of a free flying inspection robot that
flys around the Space Shuttle directed by voice commands. The robot, known as the
"Flying Eye" sends a graphic display of a three dimensional model of the Shuttle to 5
an Apollo DN660 workstation, as seen from an orientation of a x, y, z position plus
the roll, pitch, and yaw of the camera As the "Flying Eye"changes position, the
view changes accordingly. The project is a first step in developing EVA (extra
vehicular activity) robot, as described by NASA, to be an astronaut's assistant in the
vacinity of the Space Station. The mature EVA is envisioned as a free flying vehicle
equipped with manipulative arms to hold itself to a work site and perform physical
tasks at that work site

Several Al techniques were used in the implementation of this simulation The"P..-
overall software architecture is that of a "Blackboard". Each of the functional
components such as the voice interpreter, planner, dynamic control system, and
graphics operates as a independent "knowledge source"using separate processes at
a system level. The design is based on the Hearsay II architecture, although
simplified in the area of triggering and data synchronization. This "Blackboard"
uses multiple levels of abstraction. At the lowest level, purely numerical algorithms
are being used as "knowledge sources" to calculate thrusts as a function of current
commanded position. The commanded position, however, is established by a
"natural language" like voice command such as "Go to Station 1 ". This is translated
into a symbolic representation, and then into a sequence of named locations
representing a path Each named location is associated with a set of coordinates
which in turn generate thrusts to move the "Flying Eye" to the desired location.
These steps forn a hierarchy in representing and operating on symbolic and numeric
information.

The planner which is hosted on a Symbolics 3670 hasthe capability to
remember" how it got to its present position. Known paths can then be linked to

- "learn" more complicated manuevers.
Areas of future development will include: methods of obstacle avoidance using a

hierarchy of models and pseudo force fields; a logical representation of the general
knowledge that a space robot should know, to allow real conversation between the :-.
robot and the astronaut; and interpretation of the visual output so that the robot
can tell us what it sees. .
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-.0 INTRODUCTION

The network approach to systems modeling has as an underlying philosophy to provide.- -
the modeler with simple yet powerful concepts which can then be used to capture the
significant aspects of the system to be modeled. Current simulation languages such as
SLAM II, SIman and INS are built around this Idea and provide a set of concepts (eg.
Arrival, Activity, Waiting, Routing, Departure, etc.) for model building. Yet current
Implementations of these languages are limited In that they do not provide explicit - -
concepts for representing complex behavior such as decision- making encountered In
many real-world situations. When complex systems need to be modeled, the user must .
revert to a lower level language like FORTRAN. This lack of flexibility comes from the
fact that today's network languages are embedded In poor programming environments
rather than this being an Inherent limitation of the network approach.

This paper describes some key Ideas behind SEvIYON, an experimental network
simulation language Implemented as a subset of CAYENE, a hybrid Al programming _
system .

A SUITABLE PROGRAMMING ENVIRONMENT

While LISP Is an excellent language for development of a basic simulation capability, It .
Is not necessarily appropriate for Incorporating extensive capabilities Including
representation of complex decision making. In searching for a rich programming -
environment In which to base a comprehensive network simulation language, It Is
helpful to look at different approaches to simulation that have shown some flexibility
and discern which attributes are desirable. We have looked at previous Implementations
of frame-orlented, object-orlented and rule-oriented approaches to simulation.

CAYENE

SIMYON has been Implemented as a top-level of CAYENE. CAYENE Is a member of
the class of programming languages known as hybrid AI systems and It Is based on the
Idea of using object-oriented programming as a unIfyIng principle for procedure-
oriented (eg, LISP) , access-oriented (eg, demons and attached procedures) and rule
based programming.

As In Smailtalk, each object (class or Instance) In CAYENE Is associated with a unique
database containing Its properties and knowledge about the object's behavior (its ., 

-

€-- protocol). CAYENE's databases are different In that they are a generalization of _
relational databases and are regarded as logic programming environments in which
properties are expressed as assertions, protocols are coded as production rules and
control Is through four unified programming paradigms;

.J.

*4A ".
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Goal directed Inference based . .
on a powerful pattern matcher.
Object-oriented, message-passing. y

Access-oriented procedures. *.*

- Procedure-oriented programming
(LISP expressions). %

At the top level CAYENE Is structured as a hierarchy of objects and control Is strictly , QS'
by message-passing using the function

ask <object> <message> )..,.,..,

where <message> Is a goal to be satisfled using a backward-chalning Inference
procedure and the knowledge base associated with <object>. ..4-

Support for access-oriented programming is mainly through the

(If_needed <procedure>)

demon which lies dormant until there Is an attempt to retrieve an object's property

value. When this happens, <procedure> is executed. ""

One of the most common procedures used is the 'query' procedure which prompts the
user for the object's property value.

Hierarchies are constructed using the Inheritance functions

(Isa <superclass> )
(a klnd of <superclass> )

and the relation function

(needs <objectl> <object2> ...... <objectN> )

Finally, procedures can be constructed at the object level by using LISP expressions.

,-..

SIMYON

As we noted before, SIMYON Is an experimental AI based network simulation language .'.

embedded In CAYENE.

The first step In constructing SIMYON was to generalize the message passing routine
which then becomes " .

(ask <attime> <object> <message>)

-2-
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where <at_time> Is an expression which evaluates to a number. Messages are then
stored In an EVENT-FILE and sent when <at_time> matches the global variable
TNOW. This generalization provides a consistent timing mechanism to drive the
simulations. -

The second step Is to define the SIMYON system classes which are the building blocks -

for model construction. These building blocks are defined as objects with characteristic
properties and behaviors and are arranged In a hierarchy.

To define a model using SIMYON, the user merely describes the network by Initializing
SIMYON system objects such as activities, branches, etc. Examples of the classic teller
problem and of the scheduling of a manufacturing system are shown.

- CONCLUSION 
% b

.

A critical need of current network simulation languages Is the capability to represent .
complex decisions In an efficient and effective way. Simulation languages such as the
SIMYON language discussed here can provide the ease of use characteristic of network ".

languages, and at the same time Incorporate user-specified decision processes In a
complex and flexible format. For example, the decisions of a human expert could be
represented by a rule-based expert system which would be completely compatible with
the remaining network representatloa of the model. .

The flexibility of SIMYON extends beyond Its representation abilities. Simulation Itself
Is a framework In which to perform experimentatlon. Yet the use of simulation In an ....
experimentation environment calls for considerable judgment with regard to critical
analysis of simulation output. Again, an expert system to control the experimentation
aspects of simulation could be Incorporated Into the SIMYON language. Similar
remarks could be made about employment of expert systems to facilitate modeling.Thus a language framework like SIMYON becomes more than Just a simulation .

language. It really becomes a problem-solving language for a fairly broad domain of ,.
problems.
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Abstract

Symbolic Explanation Systems for Computer Simulations1

Dr. David H. Heirian E73
201 Guilford
Case Western Reserve University
Cleveland, OH 44106

In the 1970s, the notion of a symbolic explanation facility
emerged from research in artificial intelligence. Early explanation
systems merely traced the behavior (in one or another way) of symbolic
reasoning programs. If a user wanted to know, for example, how a
program arrived at a conclusion, the program would trace the steps
that led up to that conclusion. Subsequent artificial intelligence
research made it clear that reasoning traces did not exhaust the kinds

of information that could clarify symbolic reasoning programs. It has
been suggested, for example, that a good explanation system for a
symbolic reasoning program should be able to explain the strategy
behind its rule orderings (Hasling, 1984). Research on explanation
systems, in general, has shifted from the question "How do we explain
the computational steps of the program to a user?" to "How do we
explain the problem domain of the program to a user?" (note Clancey,
1983)

The problem of writing explanation facilities for computer
simulations is analogous to the problem of writing such facilities for
symbolic reasoning programs. An explanation facility for a computer
simulation can (paralleling early ideas in artificial intelligence)
trace the computations performed by a simulation in a variety of ways.
It is important, however, to demarcate the other kinds of information
(relating to the simulation problem domain) that can be usefully .

supplied by explanation facilities for computer simulations.

The first step we took in our research on explanation facilities
for computer simulations was to produce a taxonomy of explanations.
Our taxonomy is derived from the philosophical literature on
explanations, wherein a number of types of explanations are described
(Bee Hempel, 1965). We have been particularly interested in the
literature on genetic explanation (explaining an event by citing the
history of the event - note Dray, 1957), causal explanation (e.g.,

* Salmon, 1985), what-if explanation (explaining an event by contrasting
it with what Eight have happened - see Van Frassen, 1980), and
functional explanation (explaining a variable or a component by

* elucidating its function within a larger system - see Hempel, 1965).
* We believe that these four kinds of explanations are important in a

variety of explanatory activities, though in some contexts or
disciplines one or another type of explanation may be paradigmatic.

The second step we took in our research was to see if the kinds
of explanatory information given in genetic, causal, what-if, and

* how-possibly explanations could be supplied by a facility attached to
a specific simulation. For this experiment, we used an inventory 1-
control model described in (Gaither, 1982). Gaither models inventory -

control as follows:
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annual annual annual
total annual annual annual incoming carrying expected
annual -carrying + ordering +acquisition+transportation+cost for+ stockout
material costs cost cost cost safety cost I
cost stock

Q D D
ThC - - C + - S ac(D) + r(D) +(SS)C +.(S)

2 Q Q

* Variable Definitions

Q - fixed order quantity in units per order
C - carrying costs per unit in dollars per unit per year
D - annual demand in units per year
S -ordering or setup cost in dollars per order

y.ac-acquisition cost in dollars per unit
(this may be, for example, a continuous function of Q)

r -incoming transportation cost in dollars per unit
* (this may be, for example, a step function of Q)

SS5 level of safety stock in units
0 = probability of stockout in each reorder cycle

S' -stockout, reorder costs, etc., in dollars per stockout

In a simulation based on this model, an initial estimate of the
optimal order qat (the Q that minimizes TMC) is make by
calculating 1/2 (2DS C~) Q is then incremented in a rangewdetermined by this initial estimate. For each Q tested, the
simulation will determine the optimal safety stock (the
SS that minimizes the sum of the Annual Carrying Cost for Safety Stock
plus Annual Expected Stockout Cost) by varying the estimate of C<(
The sample output f rom our implementation of the Gaither Inventory
Control Model shown below only indicates the optimal Safety Stock (SS) '

for each Order Quantity (Q):
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Genetic Explanations: For the concept of a genetic explanation (see .d -.
above) to apply to the Gaither simulation, we must suppose that the

j simulation is run over an extended period of time, and that we have a
record of the actual as well as the expected variable values.
Graphing changes in variable values provides some useful information,
but such graphs will not tell us what to expect in the present time
period, or why significant changes occurred when they did in past time
periods. In our present explanation facility, we record some of this
information, because we ask the user to input text that explains
variable values that diverge significantly from the values in the time
period immediately past: -

IN9 Cost iovolwj is lwk-o.ikpitoutetrs from sw~plier, elmrs$ N~il
I: Ixpcess all costs iltilassp i it91112: bogitei Lkeor*e sisteN to mov o "fSu AMOLJ howE

11985: [xpIYss Nail Jpkcps Pist aisr
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We are presently working on methods for constraining the
symbolic explanations that may be supplied to the genetic explanation
facility. This allows other modules in the explanation facility to
access information from the genetic module (see Causal Explanations).symbolIf Explanations: Thae cayneup ied whatif gentin (sexpaatone) '

is implemented, in our explanation facility for the Gaither
simulation, as a kind of spreadsheet. Once the user has run the -

simulation with a set of variable values, he may change any number of
these values, and rerun the simulation. The system returns the
effects of these changes on simulation results. The user may also
rerun the simulation after changing the functions of the model (the
user can, for example, model acquisition costs as a step function of
order quantity). We are in the process of altering this module to
present to users qualitative what-if explanations.

Causal Explanations: Our causal explanation facility has two parts, a
functional trace facility and a symbolic reasoning mechanism. The
functional trace facility answers the question "What caused the . .

simulation to arrive at value V for quantity Q?" This question is
answered by (qualitative) traces of the computations that led to the .
calculation of V for Q. The symbolic reasoning mechanism answers the .
question "Why did the simulation result (TMC) change in the way it did
from the previous year to this year?" Our first step in anwering this
question is to calculate numerically the effect of individual changes
in variable values on total change in TMC (the technique is similar to
partial differentiation - see Kosy, 1984). We can, for example, after
this calculation, conclude that change in acquisition costs, on their
own, would have accounted for half of the total change in TmC. Why,

%%% % o.-..__
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however, did acquisition costs change as they did?

In our causal explanation module, we use a backtracking
rule-based reasoning program to determine the causes of changes in
variable values (e.g., some top-level goals in the program are the
reasons acquisition costs might have changed as they did). What is

'V perhaps more interesting about this Module is that we have interleaved

the symbolic reasoning program with information derived from the
Gaither simulation. In most symbolic reasoning programs, conclusions

Wqm are reached by 1) deduction, or 2) asking the user a question. We
can, however, use the simulation and the simulation explanation
facility as a kind of "oracle- for a symbolic reasoning mechanism.
Rising inflation, for example, might account for rising acquisition
costs, if these costs have, in the last several years, tracked
inflation.

S.Functional Explanations: In the context of simulation explanation
facilities, the goal of functional explanation is to clarify
simulations by elucidating the functions of simulation model
components. We distinguish between derived concepts, which are the
results of simulation computations, and basic concepts (i.e.,
constants or values input by the user). In our functional explanation
system for the Gaither simulation, which is in the process of being
implemented, users may ask for definitions of any of the basic or
derived concept used in the model. Basic concept definitions (e.g.,
the definition of demand) give an intuitive characterization of the
concept and describe (where it is appropriate) how one might estimate
its value. In our definitions of derived concepts, we describe how
the derived concept is computed, and we explicate the presuppositions
(and limitations) of its characterization in the simulation model.

.r Our definition of the derived concept Annual Carrying Costs, for
example, notes that the model assumes demand is linear and that order
quantity does not change from cycle to cycle. We are also working on
integrating model comparisons into our functional explanation system,
so that the user can understand where the presuppositions of other
inventory control models differ from the presuppositions of Gaither's
model.

eFuture Directions: We have recently started two projects which extend
the research described in this abstract. First, we are transferring

* the rule-based portion of our present explanation system to a
*PROLOG-based explanation shell (see Sterling, 1985). Second, we would

like to test our theory of explanations empirically. We have, in
conjunction with Professor Elizabeth Short of the CWRU Department of
Psychology, designed and are in the process of implementing an
experiment to explore the relationship between increased understanding
of the Gaither model and the use of one or another module of our
explanation facility.

Notes

This research was supported in part by the core research program of
the Center for Automation and Intelligent Systems Research through use
of computing facilities.
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Dr. David H. Helman is an Assistant Professor in the Department of
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MODVEX

An Expert System for model validation, maintenance, "_r

coordination and development

James M. McKinion [8]

U. S. Department of Agriculture

Agricultural Research Service

Crop Science Research Laboratory
P.O. Box 5367

Mississippi State, MS 39762-5367

N MU;Y.EX provides an expert system shell for the simulation models of

the Crop Simulation Research Unit (Acock,1985; Baker,1983; Baker,1985).

-. MD',EX srves as an inner shell for apPlying Artificial Intelligence and

E:pert System Technology to the development, testing, and operation of crop

and insect models. The outer Expert System shell is the COMALX system

( em-.jo,1 1986; M:Kinion, 1985). COM.AX is a crop management expert system,°"

which exercises crop models to find the optimum crop manaigement strategy.

The MODVEX Expert System shell provides the following capabilities:

(1) MODVEX provides for automatic validation of the model; (2) MODVEX

serves as a system for maintaining the proper operation of the models; (3)

MODVZX provides for automatic coordination of process-level modules when a

" de, is called for execution; and (4) MODVEX serves as a model development

tool when modules are called for and do not exist in the :odule code base.

I/ A contribution of the USDA-ARS Crop Simulation Research Unit in

cooip--ation with the Agronomy Department, Mississippi State University an-
the ,ississippi Agricultural and Forestry Experiment Station.

2,/ The author is: James M. McKinion, Electronics Engineer, USDA-ARS Crop
-imuiation Research Unit, Mississippi State, MS.

iTh, ,,so of company names and brand names is for information only and does J

not represent an endorsement or warranty by the USDA.
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MODVEX is initially being u-ed for crop model developme t. When insect %

simulation models becomes available, MODVEX will be extended to handle ] .

interactions of the crop models with the insect models. C..

Validatioi -

Crop models can be checked for validity by applying the MODVEX

system. Standard validation data sets are used in the system's knowledge

base. The rule base incorporates the heuristic knowledge of the -rop

Simulation Research Unit modelers. The user of MDVEX can then run MODVEX

to automatically test the validity of the crop model each time improvements

are mradc in the model code to insure integrity. MODVEX generates a report
o°~ .°-'

which delineates whether or not the model passes the validation test. If

te mcdcl fails to pass the test, MODVEX uses its knowledge of model .- -.

structure and operation to determine the source of failure and generate in . .

its report the likely source. Once the model can be tested for validity by 4e

the computer automatically, many opportunities arise for the system user.
-°

C-

Development .00

One of the first uses of this validation checking capability is to

u-e M) D)VEX as a model development system. Crop models have a number of *

p*Tramcters which are either very difficult or impossible to measure. . -

However, the numerical range in which the parameter m- t lie is known from C- -

t. rm','nnics, physical properties, or physiological properties. MDVEX

c,.n be u-ed to automatically find the set of parameters which optimize the , "*\-\

ro,!.ctive performan,:e of the crop model. The rule base of heuristic

,n~.e;, of model development is used to dynamically prune the search __

-% -
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space so that exhaustive search is not used and the model's parameters can JNA

be d termined quickly and economically in terms of computer execution time.

Knowledge of model structure, process structure, soil physics, plant

physiology, and micromete rology were used to build the knowledge base

which provides this capability.

*

a' Maintenance

M-11aintenance in the sense used here means proper operation of the

,. odel. MODVEX serves as a data filter to ensure the proper operation of

the crop model. As such, MODVEX sits between each module in the

C!7 operational system and monitor the values passed from module to module.

, Again, knowlod-e of the the model-plant-soil system is used. When critical

state variable values begin to deviate from their expected ranges, the

system user is given a warning that the simulated result may not be valid.

If state variables deviate strongly from their expected ranges, the system

.. can be shunted into a "Debug" mode and the user offered a list of actions %

to take,: (1) Terminate run, (2) User provide value, (3) MODVEX to provide

value, or (4) Continue run. as is. The naintenance mode here serves much

. : ~ li e a truth malntf ance capability. , -

Coordination

a'%

V4 N

A; crop md-. Is are reduced to module form in relation to plant and WAN

soil procecss and as different plant species are -odeled, MODVEX serves as

a-1 L>:pert Systc:i shell to properly choose the appropriate modules to link

tp-.'n m TL__ rog,, .her" to generate the chosen plant model. This becomes increasingly' S!

,. . %"%
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important as mire and more species dependent processes are described in .

module form. In fact it performs almost like a database query system which

will pick the appropriate modules and submodules in response to selection .

by menu or lists of attributes, except in the case of MODE\EX the knowledge

base is required for choosing the proper modules, if they exist, and A"
L k

-

inforning the user if they do not and whether or not substitutions can beJ.
made ad with what degree of error can be expected if substitutes are made.

Application of MODVEX

MODVEX is currently under development for the cotton model GOSSYM

(Baker, 1983). Extel sions of ':ODVEX are planned for the GLYCIM soybean

crop m (Acocz, 1-9,S5) ar the WINTER WVEAT crop model (Baker, 1985). .

ST-De cro.p no,,ols hove been, developed on a UIC VAX 11/750 superminicomputerm4
• using ANSI 1977 FORTRA.';. MODVEX has been developed on a Symbilics 3670

LISP Nachine using Inference Corp.'s Automated Reasoning Tool (or ART). In

operation o: th2 Symbolics 3670, MODVEX uses the LISPFUNCTION extension to -v
FKfih:%'; to call LISP functions which actually activate ART frcm the LISP

w~rld. Thus the FORTRAN program calls LISP functions which initiallize

ART, load the knowledge base from disc, resets the knowledge base, asserts

data into the knowledge baie from the running FORTRAN program, and runs ART -

which th,?n performs the above functions. The XODVEX tool cold be the

beginning of a revolution in crop modelling.

-.t.
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ARMY-NASA AIRCREW AIRCRAFT INTEGRATION PROGRAM.

Executive Summary

A 31Program Plan

Introduction

The purpose of the A'J program is to provide a human factors
predictive methodology for use by designers of cockpits and train-
ing systems for future advanced technology rotorcraft which willresult in the production of cost- and performance-effective mn- .. :

machine systems. A specific outcome will be to reduce the risk
and unexpected cost of errors early in the conceptual and develop-
mental process, and to aid in the evaluation and trade-off analyses
of proposed systems.

.4 The A3 1 program is an Army-NASA exploratory development program with the purpose 4W

of developing a rational predictive methodology for helicopter cockpit system design,
including mission requirements and training system implications, that integrates human
factors engineering with other vehicle/system design disciplines at an early stage in the
development process. The program will produce a prototype Human Factors/Computer
Aided Engineering (HF/CAE) workstation suite for use by design professionals. This . * .
interactive environment will include comput&aAonal and expert systems for the analyss 
and estimation of the impact of cockpit design and mission specification on system per-
formance by considering the performance consequences from the human component of
the system. The technical approach is motivated by the high cost of previously unavoid- * : "

able redesign and retrofit to suboptimal systems, the ever-increasing cost of training sys-
tems, including simulators, and the loss of mission effectiveness and possibly lives due to
ill-conceived man-machine design. The methodology developed to achieve the goals of .y
the A31 program might be generalized as a paradigm for the development and planning
of a variety of complex human operated systems.

Stephen Lakowske
NASA/Ames Research Center

MS 239-19
Moffett Field, CA 94035

415-694-6436
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Some Cognitive Constraints On

Simulation Aids For Programmers

David C. Littman & Elliot Soloway

Cognition and Programming Project

Department of Computer Science
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For the past three years we have been studying expert software designers and maintainers with ,~
the goal of understanding some of the major cognitive processes that support expertise in

bohdsgesadmitiesrely on mental simulation to develop their understanding of

computer programmi. On oftems-nriu01idnsoforwreste xett hc

e Whn prgramdesigners are in the process of developing a program to perform some
desigs agaimntall simulate their programs to check the behavior of their evolving

dsgsaantadescription of what the program is intended to do. .

* When program maintainers have the task of making an enhancement to a program
that tbey have never before worked with, they spend a great deal of time mentally
simulating the program to figure out how the program is organized and what it does.

'p.Since mental simulation appears to be so important for both program design and program

maintenance, it seems reasonable that program development software should assist designers

w.ith mental simulation. But what is mental simulation of programs? How does it help

programmers! And what should program development software do! We want to suggest some

tentative answers to these questions.

Our approach to understanding mental simulation has been empirical: we have studied more K

than 30 expert, professional software designers and maintainers as well as many novices. Our.1

experimental methodology presents programmers with design or maintenance tasks that take

approximately three hours to perform. We videotape the programmers as they go about their

tasks while an interviewer prompts them to maintain a running commentary on their problem .-

* solving. We then analyze the transcripts of the sessions for evidence of various kinds of cognitive

activity, such as mental simulation of programs.

As we analyzed the protocols of the novice and expert programmers, we identified five:K .*

interesting points about programmers' mental simu~ation of programs:

* First, programmers mentally simulate programs in order to build mental, causal
models of programs.

e Second, there arc at least two kinds of mental simulation.

.
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' Third, programmers coordinate the knowledge provided by both kinds of simulation in

their causal models of programs.
e Fourth, simulation is very useful for reasoning about incomplete programs.

* Finally, and perhaps most relevant to the issue of constructing useful tools for .
programmers, novices did not perform mental simulation as effectively as experts.

Building Mental Models of Programs

Designers and maintainers mentally simulate programs in order to build mental models of

them. That is, they use simulation to acquire knowledge that permits them to construct mental
, .-..%.

models that relate the function of the program to its structure. By performing mental a

simulation, programmers discover the "mapping" between vhat the program does (its function)

and how it does it (its structure.) While both designers and maintainers use simulation to build

their mental models, they seem to use it in "opposite directions." Designers go primarily from the

intended function of a program to the construction of pieces of structure to add to the their

mental models (and then to the program itself); maintainers appear to add pieces of functionality

to their mental models as they discover how the existing structure of the program embodies its

functions.

Two Kinds of Mental Simulation .. ,

Our analysis of the behavior of designers and maintainers revealed two levels of mental

* ., simulation. Rather than using a single monolithic simulation skill, programmers use different

kinds of simulation to acquire different kinds of knowledge. First, structural simulation is based

". on tracing data flow and control flow. Structural simulation provides the programmer with a

detailed mental model of how the components of the program behave when it runs; structural

simulation does not say thy the program does what it does, only what it does. In contrast to

structural simulation, functional simulation gives the program-ner a view of the program in

terms of the goals it achieves. Rather than generating information about w'hat the program code ,..'. .,

t - does, functional simulation gives the programmer answers to questions about why the program is

4....
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constructed as it is. Instead of being tied to the low level of data flow and control flow, .'

functional simulation is based on tracing what we call goal flow. Tracing goal flow gives the -3

programmer information about how the program achieves its functional goals (i.e., what plans it

uses), and how subgoals cooperate to achieve larger goals.

Coordinating The Two Levels of Simulation

Of particular interest is the observation that programmers appear to use both structural and

functional simulation together to build their mental models of programs. Our current hypothesis -. 'i

about why they use both kinds of simulation is that the different kinds of knowledge the two .

levels produce are necessary to understand interactions among components of the program. A

mental model of just the data flow and control flow level, provided by structural simulation, does

not by itself permit the programmer to understand all interactions since many arise because .

program goals must be coordinated (e.g., several subgoals must be coordinated to achieve a major

goal.) Conversely, if a programmer's mental model of the program contains only functional 4 "

knowledge, then crucial aspects of the program's runtime behavior that depend on control flow

and data flow interactions (e.g., satisfaction of preconditions,) may not be understood. Thus, in

order to understand interactions, programmers appear to need a mental model that coordinates

information from both the structural and functional levels. In fact, we have shown that

programmers who have mental models of programs that coordinate structural and functional

levels are more successful with program enhancement tasks than programmers who may have

both kinds of knowledge but who fail to coordinate them in their mental models of the program.

Mentally Simulating Incomplete Progrms

A programmer does not need a complete program in order to simulate it mentally. For

example, we observed expert program designers engage in functional simulation as soon as they

had an initial, sketchy idea of how their programs should accomplish the main goals they wanted

their programs to achieve. As they filled in their designs, their functional simulations became



4 , .*
J- • % .01"

.%%

more detailed and provided them with more precise information for evaluating whether their

designs were meeting the requirements. In addition, as they defined the manner in which

modules communicated through parameters, and decided on the execution order of the modules,

they began to perform structural simulations to evaluate control flow and data flow.

Simulation Is Part of Expertise N J,

Not all our programmers simulated their programs. In fact, novices either failed to simulate

them or did not do so with the same skill as experts. Novices' poor simulation appeared to be -b
0 - :

attributable to three deficits:

* Novices did not know when to simulate programs. While they performed some
mental simulation, they appeared unable to determine when it would provide them
with information necessary to build a good mental model of the program.

* Novices did not know what parts of the program to simulate to obtain knowledge

they lacked. Sometimes novices wanted to discover how a part of the program
worked and performed simulation to do so. Frequently, however, they could not
identify the relevant parts of the program to simulate to answer the questions that led
them to attempt simulation.

e Novices did not know how to simulate programs to build good mental models. When
novices identified relevant parts of the program to simulate, they failed to simulate :.'
them with, for example, informative test cases. In addition, they often failed to make
correct inferences about the state of the program even when they did perform the
correct simulation.

In contrast, experts almost always knew when to simulate, what parts of the program to

simulate, and they were very astute at drawing appropriate inferences from their simulations.

Conclusions

What does all this mean for cognitively based support systems for programmers? We believe

that our empirical approach to studying the cognitive activities of programmers yields useful

information that can provide constraints on the design of intelligent support systems for

programmers. At the very least, our data suggest that programmer support systems will have to

take account of the central role simulation plays in program development and enhancement. It

seems to us that a major issue implied by the importance of mental simulation is how' to help

programmers use simulation to build their mental models of programs. Based on our

,e.-. .-.,



observations of experienced programmers, we believe that support systems will have to 1) help . .
V,

programmers perform both structural and functional simulation and 2) help them coordinate the

results of simulations. .

In order to help programmers coordinate simulations at the structural and functional levels,
1 " f. rr.

support systems will need to address the critical problem of how to give the programmer the

information that he or she needs when it is required. Instead of simply inundating the

programmer with information, the support program must provide the "right information" at the

"right time." We currently believe that the most reasonable approach to this problem is itself a

knowledge-based simulation tack. A cognitively based programmer support system will have to

simulate the user's reasoning so as to understand the user's emerging mental model of the

program, determine what information would help the user to develop a "correct" mental model of

the program, and then provide it.
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Modeling of a Military C3

(Command, Control, and Communication)
System

Using Discrete Event
and

Al Techniques

D. J. Roberts
J. D. Morgeson

J. S. Dreicer
H. W. Egdorf

Los Alamos National Laboratory
P.O. Box 1663

A Los Alamos, New Mexico 87544

ABSTRACT

With their inherent complexity, military C 3 systems are difficult to model. Because of the enor-
mous quantities of communications traffic and transient data generated by a military operation, the -.
human decision-making process is not always conducted with full utilization of all available data.

• .Because of the transitory nature of data in these operations, it can be difficult to define the rules that the
human decision-makers use.

Operating under funds supplied by the Los Alamos National Laboratory Institutional Supporting
Research and Development (ISRD) 1986 Program, the authors have developed a simulation of a pro-
posed military C3 system. The purpose of the project was two-fold. First, the authors wished to learn
the potential of the selected simulation environment for simulating C 3 systems. Second, if successful,
the prototype simulation would be used to demonstrate the design methodology for producing such
simulation systems.

I. The Simulation Environment

The desired simulation environment would blend traditional discrete event simulation techniques
with expert system-like capabilities to execute the complex decision-making events. In order to realisti- -

cally represent the behavior of a military operation, the model must have the ability to maintain the
"ground truth" regarding the operation, as well as the individual entities' perceptions of the truth.
Further, the entities must be able to learn, as facts regarding the operation become known to them. For
example, a town containing a fuel depot might have been destroyed by the enemy. However, this fact
is unknown to an entity in the simulation requiring fuel. His decision process regarding where to send '- "
a re-fuel team could therefore cause him to dispatch his team to the destroyed depot. Upon arrival, the
re-fuel team would then have access to the "ground truth" concerning the status of the depot, and his
perception of the depot's status can be updated.

" . The hardware that was selected for this project was a Symbolics' 3600 with 1 megabyte of

Syrnbolics is a trademark of Symbolics, Inc.

1.,
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memory and a 380 megabyte disk. KEE 2 was chosen as the software with which to implement the
simulation. Utilizing KEE's ability to interface with the Symbolic's native Zetalisp, a discrete event -

simulation controller was written in LISP to drive the simulation. The complex C 2 (Command and .

Control) events were written in KEE's RuleSystem2. The less complex physical events (such as a refu- - -

eling operation) were coded in LISP and invoked as KEE methods. The suite of actors (entities) within
the model were defined by KEE units. .2.

2. The Physical System That Was Modeled

One of the military systems that has been proposed for national defense is the Midgetman Mobile . "
Intercontinental Ballistic Missile (MICBM) system. The system as proposed would consist of a number %I
of mobile launcher organizations that could be deployed throughout a region of the United States. A

nelauncher organization would be comprised of the launcher vehicle and other support equipment and per- , .

sonnel.
Since the MICBM system does not exist, the authors "designed" the hypothetical MICBM system,

specifying the physical assets and attributes of a launcher organization. The following is a list of the
physical equipment comprising a launcher organization, and the assets and attributes of the equipment:

Vehicles (5 types) '
1 Lift capacity, tons ,
2 Fuel capacity, gallons3 Fuel type
4 Fuel consumption, MPG *. .-.
5 Speed, MPH
6 Mean Time Between Failures (MTBF) J.

7 Vehicle hauling capacity (cubic feet and tons) 4
8 Vulnerability number (used to measure the vehicle's susceptibility

to explosion blast effects)
9 Radiation protection factor %

Electrical Generators (4 types)

I Capacity, kW
2 Fuel consumption, gal/hr
3 Fuel type
4 Weight, tons
5 MTBF, hours

Radios (5 types) -" "-"."

I Minimum and maximum broadcast range
2 Minimum and maximum frequency range a
3 Power consumption, kW ,
4 Type of data, digitized (BAUD), voice

KEE (Knowledge Engineering Environment) is a trademark of IntelliCorp of Mountain View California.
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ADP Equipment (2 types) " .

1 Electromagnetic Pulse (EMP) vulnerability 7W
2 MTBF
3 Power consumption, kW

3. Actors (Entities) in the Model "

The following is a list of the suite of actors, or entities that the model uses to represent the pro- I

posed MICBM system:

(1) Launcher Organizations, 1 to N may be represented within the model.

(2) A Command Actor represents a fixed hardened command post. Other actors (Launcher Organi-
zations, Supply Teams, Reconnaissance Teams) communicate with the Command Actor via
radio or land line. This actor can grant or deny requests from other actors, or order other actors
to action.

(3) A Threat Actor represents enemy intelligence. It possesses a suite of sensors (overhead detec-
tion systems, radio direction finding systems, etc.) that can detect Launcher Organizations or
other mobile actors, or fixed depot sites. Upon detection, this actor has the capability to launch a
nuclear attack against the actor, or a depot.

(4) A Terrain Advisor/Master performs two functions. First, it maintains the ground truth regard- , .,- -- ,
ing the "world" of the model. All information regarding sites, routes, actors, etc., damaged or
destroyed by conventional or nuclear attack is maintained by the Terrain Master. . ..

Second, the Terrain Advisor responds to an actor's request for route information utilizing the
actor's perceptions of the "world".

(5) A Pseudo-Actor represents an information net whereby observations made by civilians, ham-
radio operators, police, etc., can be broadcast to any actor within receiving range. These observa-
tions may be of damaged or destroyed sites, cities, highways, or other actors. .

4. Operational Concept and Problem Statement

To the largest extent possible, it was desired that the design of the simulation allow the
specification of the operational concept to remain flexible and easily changed. This was accomplished -.

by defining the C2 (decision-making) events in KEE's RuleSystem2. The natural-language syntax of
KEE's RuleSystem2 is more easily learned and understood than LISP code. In this way the client can
change any aspect of the operational concept by simply changing the rules defining the event of . .

interest.

The problem statement to be answered by this prototype simulation is as follows:

low survivable and effective is the MICBM system in the event of global nuclear war? .'* ."

To answer this question, the model reports the following information:

(1) Numbers of launchers damaged or destroyed before they could carry out their mission,

(2) Numbers and types of personnel losses, .%'.-

(3) Amount of communications traffic that was not received, and
(4) Information regarding enemy detection. i,

5. Summary -.

The Symbolics/KEE environment is richer than other traditional simulation environments such as
SLAM, SIMAN, GPSS, and SIMSCRIPT. Combining an artificial intelligence shell like KEE with a
powerful object-oriented programming language like Zetalisp can result in a discrete event modeling
capability superior in many ways to others currently in existence. The authors are satisfied with the .
results of the prototype MICBM simulation and are preparing general "how-to" documentation for ,
designing such simulations.

.::: ::*. -...
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gather their own queue statistics, and aren't primarily interested in model execution speed, this environ-

ment provides a powerful modeling capability, well suited to the C3 class of systems simulation.
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STRADS OVERVIEW Sunnyvale, CA 948BB-3510 I., %

In April 1985, the first demonstration of the

Strategic Automatic Discovery System (STRADS) was achieved.
This first phase system consisted of an application of

Douglas Lenat's machine-learning technique, EURISKO, to the 4."

problem of generating Middle East strategic scenarios as ..

a potential tool for geopolitical analysts. EURISKO had

already been applied with promising results to several

other domains, including:

o Championship designs of naval fleets (winning

a national tournament against human competitors "'- ,

the two years in which EURISKO was allowed to

enter the tournament)

o Discovery of novel, viable 3D VLSI designs
ot. o Discovery of mathematical concepts

The ultimate contribution of Discovery systems in

' - the present application -- generation of strategic

scenarios -- is that of conceptual blockbusting: aiding

human analysts in the difficult, time-consuming and crucial .

process of developing a range of useful scenarios to support

policy and thereby help to reduce surprise.

The application itself breaks new ground in the

use of simulation technology to aid geopolitical analysts.

As has been well documented, the human analyst is beset by

4b a number of cognitive, epistemological and institutional

constraints on scenario generation: the symptoms are -.'

frequently expressed as "mind set," "bias," "mirror imaging"

. .. ...-. .
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and the like. Further, the global geopolitical problems

confronting these analysts tend to defy mathematico- 6-

statistical approaches -- for example, the historical

V.. failure of various probability based attempts to predict

international events at analytically meaningful levels of *

detail and which also are credible and actionable for

analysts prior to the event. More to the point is a___..____'-._._

system such as STRADS which raises the readiness of analysts

by powerfully searching for, and discovering, characteristic

scenarios for various times and places, this allowing a

certain cognitive rehearsal and exercising which raises

analysts' ability to interpret new signals of actual events

during time-critical periods. Hence the measure of

- effectiveness for STRADS is less directly that of providing -- IV

predictive accuracy than that of promoting analytic

readiness. This is not to overlook the fact that a

discovery system of great power can help considerably to

safely narrow and focus the vision of the human geopolitical

analyst to realms of highly likely eventualities. Nor is

-. it to obscure the basic ability of a machine learning

-. system efficiently to discover new heuristics for -

geopolitical analysis.

..- Overview of STRADS 1. In sum, the system developed

under Phase 1 entailed these efforts: -"

Knowledge Acquisition. As a first step, project

team members performed research into political, military, -."
economic, cultural, meteorological and other characteristics

of a selected set of Middle Eastern and other (such as

U. S. and USSR) actors. In preparing the knowledge base,

project team members consulted geopolitical analysts working

for the Commander-in-Chief, Pacific, and responsible for

monitoring developments in the Middle East. Several additional

Middle East specialists also reviewed the knowledge base.

,-4
,. E.. , .4
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Knowledge Base Structuring. The second step was

to enter into the computer a working knowledge base -

sufficient to allow demonstration of concept feasibility. .

This machine knowledge base consisted of a frames-and- *% . .. ?

slot representation in which chief military, political,

economic and cultural characteristics of over a dozen

* countries and organizations associated with the Middle

East, together with the U. S., U.S.S.R., Japan, NATO and

other countries and organizations, were represented. There

were over 450 individual slots describing each actor.

-.- Development of Rules. Families of Rules -- at

present there are about one hundred rules -- to permit

scenario generation were then developed. These consisted

of several rule-types, including:

1. Natural Event Rules: governing environmental
events (earthquakes, etc.), deaths of leaders,

and other events.

2. Stopping Rules: governing the termination of

scenarios as a function of violation of time

assessments and/or occurrence of pre-defined

events (e.g., the onset of certain types of -

conflict).

3. Reacting Rules: governing causal interactions

among actors in developing scenarios (e.g.,

military readiness reactions of one country to

hostile activities in another).

4. Rippling Rules: governing the proliferation of

effects of local events out to other actors in

the knowledge base (e.g., effects of local economic

changes on region at large).

r. 5*: , -
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Development of Control Structure. The relatively
complex control structure cannot be explained in the

present allocated space. However, I note that this complex

control structure is designed to meet future requirements :. -

as the rule sets and knowledge base increase in size and

sophistication. It is best discussed here with reference
to these major aspects.

1. Time: The simulation time interval varies depending

on the characteristics of the scenario. A large

time gap may occur when no events are scheduled..-

However, smaller increments are required when -

there is a lot of activity.
.~~ .0

2. Rule Organization: The rules have been organized -

hierarchically by type. This organization allows
the system to control which rules are considered

at particular points during the scenario.

3. Displayed Information: During scenario generation, I • A
we have reasonable control over what information

is displayed to the user. This will allow us to

build customized user interfaces during Phase II.

Development of a Demonstration Scenario-Generation

Capability. The final task in developing the prototype

system was to generate initial scenarios to explore concept -° K-
feasibility and application.

'. . . .
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AI AND SIMULATION AT TASC1! 8301 Greensboro Drive

McClean, VA 22182-

For the past three years, the AI group at TASC has been V
involved in applying AI and simulation techniques to the
problems of collection and resource management. Collection

8management involves allocating and tasking multiple sensors to
collect selected information. This task requires knowing
tremendous amounts about the information to be collected plus
knowing how to effectively allocate resources to collect the

41 most important information.

We have developed a series of resource advisor programs
which have dealt with mission planning, situation assessment,
and real time mission execution. I will describe the mission
planning system which combined AI expert system techniques with
mathematical programming and simulation.

The TASC Mission Planner Expert System is a 8

"multi-level" system which gives advice about mission
planning. It combines a "surface level" model of production
rules with a "deep" model of mathematical optimization and
simulation.

~8*~* Every day the mission planner must develop a deployment 8

of resources to collect the information he is tasked to *

collect. The mission planner faces a variety of issues in
choosing a deployment: tasking priorities, resource
constraints, geography, time, collection objectives, and
collection characteristics. Previous attempts at decision aids
for collection management used mathematical programming to ~.
develop complicated "deep" formal models to allocate resources
to tasks.

However, several problems occurred. The mathematical '.W

* models did not account for all the input variables and are so
complex that it took a mission plannerS5 hours to set up a *.~

simulation run. ~. -.

VV
1: %
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An expert system was built to aid the planner in '. ..

developing resource deployments. (Figure 1) Expertise was
taken from mission planners and encoded as production rules.
These production rules take as input an intended collection
goal, and on the basis of expert knowledge, produce a
deployment plan. The deployment plan is based on heuristics
and therefore, may be only 80% acceptable and not
mathematically optiho..l. The computer generated deployment
plan is then passed into the "deep" mathematical simulation to ''

produce a more precise plan. In most cases, however, the
surface level production system proved to be just as good as
human experts, and reduced the time to develop a deployment
plan from 5 hours to 10 minutes.

The production rule system was built on a Xerox 1108
LISP machine using Interlisp-D and the KEE knowledge *

engineering tool.

The mathematical model was written in FORTRAN on a VAX
11/780. The Xerox 1108 was connected to the VAX via an
Ethernet local area network. Plans generated on the Xerox were
shipped electronically to the VAX where detailed mathematical
treatment was performed. The total plan generation scenario
was reduced from 5 hours to 10 minutes.

The expert system had 6 parts. (Figure 2) The -

planning sequence started with Menu oriented entry of
collection goals. These collection goals were then passed to a
planning and inference module which contained 190 rules and 270 2
frames and produced a deployment plan. This plan contained the
allocation of resources to collection goals.

The reasons for each of the results could be explained
using a rule tracing capability. The plan could also be
modified by the human mission planner if he thought that
selected portions of the computer generated plan were not
correct.

S" %



The human edited deployment plan can then be sent
across the Ethernet to the VAX and entered into the simulation
program. This program simulated the proposed resource
deployment and calculated the consequences of the proposed
decisions. The human mission planner can then continually
modify portions of the simulation for fine tuning. The AI
program also contained a module to acquire new information from
the mission planner. If any collection goals were not known,
the system would prompt and build new frames to put in the
knowledge structure.

The FORTRAN simulation used the techniques of
4 operations research, notably mathematical optimization and

allocation.

The mission planning expert system (Figure 3) used
multiple AI programming techniques: frame based knowedge
representation with multiple inheritance, rule based reasoning
and explanation, object oriented programming, and bit map
graphics. Approximately 6 man months were spent acquiring the ....
knowledge to do planning.

The expert system was later evaluated against human
planners to determine if the computer generated plans
reproduced expert knowledge. (Figure 4). Test cases were 4
given to 2 human experts and the computer; answers were -..-

generated and given back to the same human experts for
evaluation. The answers were evaluated on a scale of 1 to 6.
A score of 1 meant unacceptable deployment, while a score of 6
meant a perfect deployment. A score above 3 meant an
acceptable answer, while a score below 3 meant an unacceptable
answer.

In 16% of the cases the humans gave the computer a
higher score than the humans. In 50% the computer and humans
tied, and in 32% of the cases the computer was scored lower
than humans. In no cases, however, was the computer score
rated unacceptable (less than 3), while in one case the humans
rated their own solution unacceptable (less than 3). It also
must be remembered that the human took an hour to generate a .
plan while the computer took 3 minutes.

.% ..
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Knowledge Base Design and Electronic Troubleshooting

James H. Alexander

Al Department I

Computer Research Lab
Tektronix Laboratories
Beaverton, OR 97077

ABSTRACT

In general, my work* has focused upon the development of a knowledge engineering
methodology. This has resulted in the conception of Ontological Analysis. On a more specific
level, I have been building expert systems for diagnosing failures of electronic instruments. The
construction of these systems involved the creation of models simulating the operation of elec-

* tronic instruments. Practically, the development of these diagnostic expert systems has many
implications for the production, and field support of electronic products.

* 1. Top level research: Ontological Analysis

Today, the design of knowledge bases requires the involvement of an expensive and highly -

* trained knowledge engineer. Typically, the knowledge engineer will analyze a problem, select a .

problem solving technique, select a knowledge representation, and implement a rule base. This
process is guided by the knowledge engineer's experience on an ad hoc basis. My colleagues and
1 have developed a methodology for the analysis of problems. The goal of this research is to
develop an articulatable (and teachable) method for creating knowledge-based systems. A paper
we are presenting at AAAI-86 proposes a methodology which is an outcome of this work: onto-

N logical analysis (Alexander et al., 1986).
:% The basis of ontological analysis is a principled decomposition of a problem domain. We

borrowed from denotational semantics the use of domain equations as a tool for describing a
knowledge engineering problem. The process begins by identifying in the static ontology of a
problem. The static ontology describes the basic elements and relationships between elements in
a domain. Second, a dynamic ontology represents the operations that can be performed upon the ..

elements described in the static ontology. Finally, the epistemic ontology contains domain equa-
tions describing the methods for selecting appropriate operations to execute at any given time.

Using this high level analysis technique, a knowledge engineer is able to scope out a prob-
% lem without committing to a knowledge representation or inference scheme. Rather the ontologi-

cal analysis permits the knowledge engineer to examine the problem in detail and the production
of the ontological analysis guides the selection of appropriate knowledge engineering methods.

2. Electronic Troubleshooting with expert systems

The Knowledge Engineering group at Tektronix has constructed a number of expert sys-
temns for troubleshooting. The troubleshooting project is important for ensuring continued quality
product support. Field Service Technicians are increasingly faced with a wide variety instru-
ments; to repair, so many that it is difficult to make sure that all technicians are trained to repair

*The work described in this abstract was done in Collaboration with the other members of the Knowledge En-
gineering Group: Mike Freiling, Sherri Shulman, Steve Rehfuss, and Steve Messick.
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all instruments. With a set of knowledge based assistants, it will be possible to distribute repair
knowledge evenly among technicians. A well designed troubleshooting assistant will make most
technicians (but primarily novice technicians) more efficient.

This work has grown out of an early experiment in constructing the FG502-TASP (Troub-
leshooting ASsistant Prototype; Alexander and Freiling, 1985), which was an expert system for
assisting a technician with repairing a simple electronic instrument, the Tektronix FG502 func-
tion generator. The FG502-TASP consisted of a knowledge-base sufficient to diagnose 80-90 per-
cent of the most frequent instrument failures. One of the key features of this system was the way
it communicated with the end user. The system made strong utilization of graphics such as circuit
board pictures, and schematics. The graphics were coordinated so that the user could quickly
cross reference parts from a schematic location to a circuit board location. In addition, the system
guided the diagnosis by using pointers to indicate precisely where measurements need to be "-
made. The success of this experiment convinced us that strong graphics support is a crucial com-

*7 ponent to any troubleshooting system.

Subsequent work on troubleshooting focused upon building a general troubleshooting
mechanism which could be used to build troubleshooting systems for a whole family of elec-
tronic instruments (Alexander et al., 1985). The goal was to build a domain specific inference
engine, which would facilitate later construction of troubleshooters. The resulting inference
engine (HIPE for Hierarchical Inference Processing Engine, Rehfuss et al., 1985) contains a gen-
eral scheme for trouble shooting called top-down localization. The top-down localization scheme ' -
systematically selects tests beginning with the output modules of an instrument. Step by step it
exonerates modules and tests modules closer to the inputs. Once a module is deemed bad, the-fo

- scheme will drop into that module and repeat the procedure at the more detailed level.
Most of the general design decisions for troubleshooting applications are encapsulated in

HIPE, thus obviating the need for the knowledge engineer to worry about such decisions when * t. .-%,,,,

designing a new troubleshooting application. Instead the knowledge engineer can concentrate on , ,_
problems specific to the current application. HIPE has been used to implement a troubleshooting
system for repairing the Tektronix 2236 oscilloscope and is being used in the development of
other in-house systems.

One of the continuing topics of interest in this project is the addition of stronger models of
the device-under-test to our knowledge base. Currently, the system relies on a very weak model .---
of instrument operation. The level of abstraction used by HIPE presently is one of describing the
modules within an instrument, and indicating the causality one module has upon another module.
However, in the future we expect to have stronger simulation models of the instrument. The .-
inclusion of knowledge regarding the functionality of each module will allow the expert systems
to reason about the operation and interaction of modules, thus creating the possibility of more
powerful and accurate troubleshooting schemes.
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Simulating Processes "-:-"-. ~..- --C.
over Multiple Abstraction Levels*

Paul A. Fishwick . .

Norman I. Badler
Department of Computer and Information Science

" University of Pennsylvania
Moore School D2

Philadelphia, PA 19W04

May 21, 1986

g.,, Abstract s.

In dealing with model complexity, most simulation systems have resorted to representing either
• ..,- a restricted part of an overall system or a qualitative model of the entire system. Examples of

restricted simulations are control systems for electro-mechanical systems (such as helicopter control
or control of an engine). Examples of qualitative model simulations can be found in the qualitative
reasoning literature[l]. The use of either a restricted or single-level qualitative model is acceptable
when an analyst is playing the combined roles of model creator, analyzer, and verifier. But what ".': "-
if an analyst is creating a simulation model that is to be studied and utilized by a arbitrary group
of individuals? Some individuals will have a deep knowledge commensurate with that of the model
creator. Others may have only a layman's knowledge of the system; they may want to learn about
the system by using an exploratory simulation approach.

Some simulation systems have taken a combined discrete/continuous approach when studying
processes. Examples are systems written using the GASP[4] language and special-purpose combined
simulations implemented in an arbitrary general purpose language such as PL/I or FORTRAN.
Payne[3] gives a concise overview of combined simulation approaches. The combined approach
yields a simulation capability which includes discrete event simulation with the ability to optionally
monitor certain variables such as displacements and derivatives in motion equations.

Our approach to simulation promotes the view that complex systems require a better overall
organizational approach to studying processes over time. Specifically, we propose a method of
simulation which defines a process model over an arbitrary number of abstraction levels. We will
exploit the process abstraction associated with systems, thereby facilitating a more comprehensible a
model organization and a great reduction in time complexity due to partitioning. Combined dis-
crete/continuous models can be better represented since it is possible to view some aspects of the
discrete model as being abstractions of the continuous model; one is able to separate these abstrac-
tions into virtual machines that may execute independently of one another and still communicate

% *4*b via an abstraction bridge (which will be termed interfacing).

*This research Is supported by NASA Johnson Space Center Contract NAS9-17239, Army Research Office Grant
DAAG29-B4-K-0061 and NSF CER Grant MCS-82-19196
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We have constructed a simulation language termed HIRES [2] (ifierarchical fl~asoning 5system)
that permits the simulation analyst to create an abstraction hierarchy composed of levels defined
(ultimately) using production rule sets. Specific features of HIRES include the ability to control
the flow of the simulation either manually or automatically using relations and the ability to design
process abstractions using models that are appropriate for those levels. The analyst can construct,
for instance, levels in the form of Petri nets, scripts, and continuous block models by using the pre-

processors that translate these high level descriptions into production rule sets. A slightly modified .

version of the standard production rule firing algorithm then executes the process. Two example .'2

simulations have been constructed to demonstrate the capabilities of HIRES: a four level elevator
simulation and a simulation of the "dining philosophers" problem using two levels.

During the course of the research, we have discovered many interesting issues. Abstraction
levels, for instance, can be designed using an aggregate technique or via hand-built methods (viz. 'i
acquiring domain knowledge from groups or individuals). Both methods are useful; the method
employed depends on whether it is desired to 1) maintain consistency among levels, or 2) represent
domain knowledge in an effort to understand human thought about processes via simulation. An-
other primary issue in multi-level simulation relates to constructing abstraction bridges between

each level. Is there a formalism for constructing a bridge? We have found that interfacing between
abstractions seems to be domain dependent - HIRES, therefore, contains a general set of random
variates along with the ability to construct heuristics for interfacing. Many issues remain such
as analyzing the computational complexity of abstraction levels, and studying the use of entirely
different implementation languages or hardware architectures for each level. ....-
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-N Qualitative Simulation

for Estimating Diffusion Transit Times

S.L. Hardt

Department of Computer Science

University at Buffalo SUNY

-. Buffalo, NY. 14260.

Abstract

Diffusion processes in small but complicated geometries proceed at a high speed and are of great importance

for a variety of physical, chemical and biological functions. Exact mathematical formulation of the
processes is possible in the form of diffusion equations (partialsecond order differential equations)and their

appropriate initial and boundary conditions. However, in many cases, it is hard to investigate the behavior

of these processes since analytic solutions to the mathematical equations are out of the question and numer-

ical simulations are exceedingly resource consuming.,... 
: -:

We were confronted with the problem of having to estimate the transit time (mean first passage time) of

particles diffusing in small complicated media. We came up with rules of thumb that describe the relations

between the pace of diffusion and certain features of the media. These rules are based on the exact solution '-

to the transit time problem (see Hlardt 1980b, and Hardt 1984)"-, -

The research reported here centers on the qualitative simulation of aspects of the process of diffusion in

structured media. In particular, we are interested in the automation of reasoning about the effect that the

/ geometry of the diffusion space and its composition have on the diffusion transit time. We have been

ThL; research is supported by the National Science Foundation under grant number MCS 8305249.
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developing the logic required for the representation of the knowledge used to reason about the pace of -

diff usional processes. In addition, a theory is developed to answer the following two questions: (1) fHow to '"~

coordinate the use of "deep" and "shallow" causal knowledge, and (2) how to determine when to stop the

reasoning proces. To demonstrate the issues involved in our research, consider the following two problems.

4. 'Molecules released from one spherical surface diffuse to. and are trapped by a
second, concentric, spherical surface. The radius of the inner surface is much less-
than the radius of the outer surface. Case (a): the molecules are released from the
outer surface and diffuse inward. Case (b): the molecules are released f rom the
inner surface and diffuse outward. Compare the transit times.

Longer in (a) []..'~.
- ~The same in both II'

Longer in (b) I1'

Molecules released from the surface on the left diffuse to. and are trapped by the
surface on the right. The molecules are slightly soluble in water, and highly solu-
ble in oil. In case (a) they diffuse through the layer of oi. befoie reaching the
l.ayer of water. In case (b) the thickness of each layer is unchanged but the order is
reversed so the molecules diffuse first through the water and then the oil. Compare
the transit times.

The same in both[
Muh oge n a

0:1. Much longer in (a)

0 U1
00 (b)

- Using common sense knowledge based on experience with everyday-life physical events, may lead to the
*4 4. *4~4%%following reasoning: since in both cases (a) and (b) the diffusing particles travel the same total distance, and /

are exposed to the same overall medium and volume, the transit time for both cases should be the same. ; ,'

Although this above reasoning. which was based on intuition about inertia processes produced the wrong

answer, it may serve as a window into the knowledge people have about every-day life physics. In partic-

.
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ular, the knowledge used to produce this reasoning is process-based (Forbus 1984) since it centers on the

flow process. Hence, the above reasoning pattern suggests that the process description of flow contains "

knowledge about distance, volume and total media and their effects on transit times for flow processes.

In order to correctly and effectively estimate relative values of transit times in complicated structures, the .\*
-*. ... -'.

following two expert hueristics which can be based on the formal theory of Brownian Movements or the -,. .

theory of second order partial differential equations. (Hardt 1979 and 1980a,b) should be considered:

(1) Movements of individual particles are mutually independent and independent in each degree of

freedom. -" --... '

(2) The accessibility of a target is determined by: (a) The size (largest linear dimension) of the target.

(b) The affinity of the diffusing particles to the immediate target environment.

For the quiz problems presented above, it is enough to use the second hueristics and to realize that * -.

the transit time is very strongly dependent on the accessibility of the target. Hence, in these exam-

pies, accessibility is a central concept and it drives the reasoning.

There is a great similarity between building a simulation model and building a knowledge base.

When mathematics is applied to problems in the natural world, the resulting formulation is rich

with the mathematician intuition. The thought processes that resulted in the formulation are, in %

C" an important sense, incorporated in it (e.g. Lin and Segel 1974). Artificial Intelligence (AI)

V.N approaches to the problem of qualitative reasoning may be placed along the conceptual line connect-

ing the original intuition and the resulting mathematical equations (v. hen they exist) in the above

scenario. At the one extreme on this line, Al provides an approach that can be viewed as reasoning

about simplified qualitative (mathematical) equations. (see De Kleer and Brown 1984, Kuipers -

1984). At the second extreme, Al provides an approach that can be viewed as reasoning about

processes with no special emphasis on causality (see Forbus 1984). A system using the first approach %

% to solve the quiz problems reasons about a qualitative version of the difference equations used to ".-.
"--.'
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numerically integrate the diffusion equation for this case. A system using the second approach, rea-

sons about the process of flow in structured channels, with special emphasis on the effect of channel

geometry and composition on the flowx rate and the channel hold-up. Both these approachs can be

augmented into a numerical simulator to provide more effective resource utilization.

To implement and further investigate the process of qualitative reasoning about diffusion transit

times. we have developed the DUNE (Diagnostic Understanding of Natural Events) system architec-

ture that organizes the knowledge around concurrent processing structures. The system was

designed as a shell for expert-systems that aid diagnoses a.sessment and problem solving tasks (see

Hardt et al 1986). The full presentation will include the formalism that support the reasoning as

well as a discussion of the computer implementation.

Acknowledgement. This research is supported by the National Science Foundation under grant .
number MCS-8305249.
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1 Introduction

Research on combining Al and discrete simulation is being pursued in the Department of \21 ,

Computer Science at Virginia Tech. Research is concentrating on both developing simula-
tion tools that are usable within AT systems, particularly in the area of robot planning, and %
integrating AT capabilites within conventional discrete simulation frameworks.

2 The Prolog Simulation System (PROSS)

One of the major failings of discrete simulation, and existing Simulation Programming
Languages, is the inability to model intelligent behavior. Frequently the discrete simulation
developer makes assumptions about the system being modelled (for instance, the assumption
of non-adaptive behaviour by all objects within the simulation) so as to avoid having to
model intelligence.

To overcome this, by providing a tool that allows such behavior to be modelled within .
conventional discrete simulations, PROSS (The Prolog Simulation System) (1) has been
developed. PROSS is an implementation of the General Purpose Simulation System (GPSS)
in Prolog. Within description of object processes, Prolog goals can be freely mixed with
GPSS block statements. Thus at one extreme a PROSS process description can be a
conventional GPSS process description; at another extreme it can be an agenda of goals. .

% Process descriptions in PROSS can be dynamically altered within the running simulation, ..

and thus models of expert reasoning can be used to alter or plan object actions as the 1.1
simulation proceeds.

on leave from the University of Kent at Canterbury, England ... .
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3 Using Simulation in Multiple Robot Planning -"""

An initial multiple robot planning and execution system has been developed (2). This "-"

system uses multiple operating system processes to simulate parallelism. This approach e ..proved inflexible, and consumed many resources, so a discrete simulation system has been
constructed to model interaction in multiple robot systems. The system allows robot plans

to be tested on hypothetical worlds. At present, all work is proceeding with Prolog. Ulti- '"LN
mately, a generalised multiple robot simulation tool will be implemented in PROSS.

4 Machine Learning in the Development of Discrete Simu-""
lations - '%

One of the hardest parts of simulation modeling is the production of a programmed model -

from a conceptual model. This task could be aided, or even circumvented, if software can beconstructed that in somercn in mutle robot system t e modelled, and automatically " "

constructs all or part of the simulation model..-, ",?
As a start on the investigation of machine learning to this problem, Quinlan's induction

algorithm ID3 has been used to induce the necessary conditional events in a discrete-event

simulation model from a set of examples (3). The experience was encouraging, in that . '.'
valid conditional events were produced in a form suitable for future coding in a Simulation " .""
Programming Language. However, ID3 is very constraining - a valid event can only be""""
guaranteed if a complete set of examples can be provided. ' '

plicable. For instance, learning- by-analogy could be applied to discrete simulation, with the
intention of producing a system that can generate a simulation model for domain ao given del
a simulation model for domain b, and the characteristics or constraints that make a differ
from b. t

5 Advisory Systems for Discrete Simulation Users

Increasingly, discrete simulations are being ned by the model sponsors, rather than the
model developers. Advisory expert systems hold the promise of being able to provide
expertise on the use of simulation models to naive users. An expert system that helps
users determinalaeventsiwee experiments with transaction-flow discrete simulation models
has been developed (4). Called TRANS, it has been constructed using the ES/P Advisor

shell an d Prolog. % . •,-.-
A number of conclusions have resulted from the development of TRANS. Firstly, the "=inadequacy of a rule-based approach, and the need to represent simple causal relationships

(for instance, increasing resource provision may result in decreased queue lengths) within
the system. Secondly, the problem of terminology. Simulation analysts use a fairly precise

L 
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meta-language for discussing simulation models. TRANS employs this language. However,
model sponsors typically want to talk about a model in terms of their own world. Thus any
general advisory system may need to be tailored to any particular application area.

Due to these problems, work on TRANS has been suspended. Any future attempt at
producing an advisory system for simulation will have to address the issue of how best .

to represent simulation knowledge, and combine it with knowledge about the application
domain.

4..
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REASONING ABOUT DIAGNOSIS AND TREATMENT
IN A CAUSAL TIME-VARYING DOMAIN .

USING SEMI-QUANTITATIVE SIMULATION AND :.
INFERENCE

Yong-Bok Lee* and Lawrence E. Widman, MD, PhD*+

*Center for Automation and Intelligent Systems Research, Case Western Re-
serve University, Cleveland OH; + Division of Cardiology, Case Western Reserve
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Keywords: scenario construction for expert systems, integration of AI tech-
niques with conventional simulations, knowledge representation formalisms for
simulation.

This project seeks to develop improved knowledge representation and rea-
soning algorithms for domains dealing with time-varying phenomena. Such
domains in medicine include cardiovascular hemodynamics; renal pathophysiol-
ogy; endocrine, biochemical and genetic pathways; and respiratory management.
Improvements in these algorithms could allow expert programs to (1) form dif-

--'i ferential diagnoses on the basis of available signs and symptoms, (2) recommend
treatment based on a global understanding of the given patient's disorder, (3)
evaluate the outcome of treatment to refine the initial diagnosis and to detect
new concurrent diseases, and (4) interact with the user on a symbolic level when
explaining its reasoning and acquiring new information. Such algorithms could
also be applied to other time-varying domains.

The fundamental approach consists of defining functional building block$ for
describing the expert domain in symbolic terms, translating the domain into a
set of first order differential equations on the basis of the building block defini-
tions, establishing initial conditions for the equations on the basis of signs and .-

symptoms, and integrating the equations numerically by standard techniques.
This approach combines the descriptive power of mathematics with the symbolic *.
reasoning power of expert system technology.

The use of numerical integration of differential equations for physiological
modeling has been well developed by Guyton and others. With the judicious
use of default values and semi-quantitative arithmetic definitions, the inexact
information available to the expert program is sufficient to permit satisfactory
simulation. Feature extraction on the simulation output translates the results
back into the symbolic domain, allowing the program to make inferences regard-
ing historical and future events on the basis of the known causal relationships
of the domain and its knowledge of the patient.

The approach has been tested in the cardiovascular domain. A symbolic . ' -
model was built using only well-established relationships. To test the default
capability of the approach, very few of the relationships were specified quantita-
tively: most were specified as links consisting of causative node, affected node,

'p..- 
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and direction of influence (positive or negative). Time delays were specified by
order of magnitude. The program was written in Maclisp.

The performance of the model was tested on sixteen classic cardiovascular
disorders, such as decreased contractility, increased pulse rate, decreased sys-

temic vascular resistance, and decreased gravity. In all cases, the output of the
simulation was qualitatively correct: all variables changed in the appropriate
direction on the proper tiescale with semi-qualitatively correct magnitudes
of change.

The next step, establishing the initial conditions for the equations on the
basis of signs and symptoms, is now in progress. It consists of searching among
all possible states of the model for those which include the given signs and A -
symptoms. Signs and symptoms are translated into semi-uniaveals --

In an ordered quantity space. Each state of the model is a causally consistent
specification of one value for each variable in the model. Each state is also
adiagnosis, since deviations from normality in the model imply the existence

of one or more primary faults or derangements (diagnoses) and compensatory
secondary changes.

The basic approach is depth-first search combined with semi- quantitative
constraint propagation. The directed graph representing the physiological model
is converted to a tree by terminating cyclic linkages. The tree is traversed
bottom-up and top-down as permitted by the given signs and symptoms. Search
poh-s consist of the tentative v~alues which are assigned to variables as the tree is .**

traversed. New values are constrained by values previously assigned to causally I*- '
related variables considered elsewhere in the tree. Creation of new search paths
occurs when more than one semi- quantitative value can be assigned to a variable

* under the available constraints. Domain-independent heuristics limit the search
space by forbidding new values leading to physically impossible situations.

Unlike ordinary tree searches, all branches in this tree are considered in turn
for each search path unless the path is abandoned. Paths are abandoned when
inconsistent constraints are identified in cyclic links in the model or in variables ~

4,. Possible diagnoses are found by matching value assignments against a list of

diagnoses and their primary derangements. Currently, diagnoses are limited to
I.exactly one derangement. Preliminary results show that this algorithm identi- ~

fies correctly all single-fault diagnoses consistent with a given set of signs and
symptoms. Issues of the relationship of physiological thresholds to the quantity
space, identification of multiple diagnoses and of diagnoses with multiple faults,
and the match between value assignments and the corresponding simulation
output require further investigation.

Symbolic model-based simulation using functional building blocks for de- ,.%

scribing the expert domain in symbolic terms may be useful in a variety of
physically realizable domains. The symbolic form of the model also lends it-
self to simulation at multiple levels of abstraction and automatic analysis of
simulation results.

2
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K Thiere are a variety of projects at the Rand Corporation which aim

at the hybridization of knowledge-based and simulation technologies.

These range from research in fundamental issues to the development of ,

large applications for delivery to end users. I am involved with a

number of these projects in roles ranging from kibitzer to principle

investigator.

RAND Strategy Assessment System "

I am project leader on the National Command Level modeling project

for the Rand Strategy Assessment Center (RSAC). The RSAC is a large

($4-5 million/year) program developing a software system called the Rand

Strategy Assessment System (RSAS). A beta-test version of this system

will be delivered within the next month. The RSAS is a very large .

simulation and (man-machine) gaming facility which incorporates both

traditional simulation and knowledge-based models. The knowledge-based

portion includes both rule-based and script-like models. The RSAS must

certainly be one of the largest existing simulations using AI

techniques. I am one of the designers and implementors of the RSAS as a

whole, and I also have primary responsibility for the National Command

Level (NCL) models in the system.

The National Command Level models simulate the decision making of

national political leadership during large scale global crises. When

awakened, these models make a series of reasoning steps resulting in

4. decisions about global and operational objectives and strategies. We

4 are developing a number of these models, with different versions for

various hypothetical types of leadership for each of the superpowers.

The NCL models serve as components of the overall simulation and also

stand independently as important tools for research in political

science.

% -
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One of the unique features of these models is their use of a

simulation as a knowledge source. In fact, by virtue of a technique we

are calling recursive simulation, the NCL models can run a version of

the overall RSAS to assist in decisionmaking. The models specify

assumptions about the opponent, the nature of other actors, and the laws -V'%-i.

of causality of the game world. These assumptions are used in

". performing a "look-ahead" simulation. Thus, the rule-based models can

use the simulation to ask a variety of what-if questions. This has

proven to be a powerful method. Because these assumptions can be

updated as a result of game history, we are able to model phenomena of

learning during course of a conflict, as well as deception and feints

aimed at producing false learning in one's opponent.

Knowledge Based Simulation

I am also involved in the Knowledge Based Simulation Project. (For

a full description of this effort see Jeff Rothenberg's abstract, also 4
being sent to you.) My interests here are in a more general exploration

of using simulations as knowledge sources for rule-based systems, and in

a complex of ideas I call "chunking with objects".

Based on experiences with the RSAC I have the belief that using A*

simulations as knowledge sources can be a powerful technique (and one . ..

which is not often included in lists of ways that artificial " -

le% intelligence and simulation can be usefully combined). In order for ..

this technique to be applied broadly, some problems must be addressed.
General methods to allow rule-based systems to specify particular

simulations to be run need to be developed. The variety of ways in

rd which the results of such simulations could be exploited by knowledge-

based systems needs to be explored. We also need to better understand

the trade-off between representing knowledge as a simulation model as p'

opposed to explicit representation as rules or frames. Essentially, the

simulation models serve as representation for certain kinds of deep

knowledge, with rules representing more shallow knowledge structures. 2

4..-.24 -4-.I
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Object-oriented methodologies have provided a major technical basis

for combining AI techniques with simulation. Our experience with ROSS

and other object-oriented languages have led us to a number of

observations about the limitations of such tools. Particularly ,.
compelling to me is the difficulty in building very large systems using""

object-oriented methods. Much of this difficulty results from the lack .

of suitable constructs to properly "chunk" the knowledge which is ' '
represented in the system. A generalized version of the object-oriented

paradigm could provide a number of features which would assist both the -

programmer and the end user. We are working on methods for allowing a

variety of self-contained local points of view in both the coding and

execution of these systems. Our approach includes not only scoping

facilities, but ideas like local simulation, multiple presentation W,

perspectives of the simulated world, and representation of multiple

levels of aggregation. .

44V
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"Orthogonal" Views of a Simulation

Dr. Malcolm R. Railey [2S]

The BDM Corporation .

7915 Jones Branch Drive w_

McLean, VA 22102-3396

At BDM Corporation, we are developing an expert system to

integrate the tasks of planning, control, and analysis of a complex

(i.e. global or integrated) simulation. An integrated simulation

represents a combination of one or more low-level or primitive

"entities". Each entity perceives the combination of all other

entities as the "environment" with which it may react. Each entity

also possesses a set of "characteristics" that express intra-

properties such as its operation and attributes, and inter-properties A

such as its input/output requirements and its causal relationships

with its environment.

The planning of a simulation involves the specification and

definition of all entities and their environments. In controlling a

simulation, one not only executes the integrated simulation, one

also alters or perturbs the behavior of one or more entities and

their envircnments. Controlling an entity's environment enables one

to observe and therefore model certain behaviors of the entity. The

V. objectives of analysis determine the observable variables (the

entities to be observed) in the simulation, and thus they determine

the control variables as well. The components of an entity's

environment must be controllable, hence these components must be

defined at the necessary level of abstraction (i.e. granularity) to

be controlled. The objectives of analysis affect the plan and

control of the simulation. During analysis, one observes the effect

IV?
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of the perturbations on the behavior of different entities, and then -. ,

determines whether the objectives of analysis are achieved. e

our goal is to achieve a "complete" and "correct",

"controllable", and "observable" simulation. First and foremost, an

integrated simulation must be complete and correct. By complete, we ..

mean all entities that must be integrated in the simulation are

integrated. By correct, we mean the entities are combined in a manner

consistent with their inter-properties. Without correctA

specification of the observable and control variables, one may not

focus on particular behaviors or attributes of the integrated -

simulation, and thus an analysis of the integrated simulation with

respect to the objectives of analysis is not possible. The key to

planning a controllable and observable simulation is in the

* statement of the objectives of analysis, and in how this statement is

incorporated into the planning and controlling phases of the

simulation. Our approach here is to incorporate "orthogonal" views e$ '-4

of a simulation in order to integrate these three tasks.

"Orthogonal" views of a simulation are not simply multiple

levels of abstractions, but rather totally different views of the

same simulation. For example, suppose we wish to determine the

*effectiveness of an automobile as a means of transportation. Using

multiple levels of abstraction, we may model the operation of and

interaction between an automobile, its driver, and its environment.

From an orthogonal view, the automobile is modelled as a means of '

* transportation rather than a mechanical device, the driver is

modelled as a person that uses the automobile as transportation *

rather than as the operator of the vehicle, and the environment is * #Z

modelled not as the road, traffic, or weather, but instead the*4

r-- e- ec,



perception of the person towards his means of transportation in he

regards to its effectiveness. During planning, one may completely

and correctly specify all entities necessary to describe the

vehicle, the driver, and the environment. Incorporating the

orthogonal view (the automobile, driver, and the driver's

perspective towards efficient means of transporation) guarantees that

the necessary observable and controllable variables in the integrated K

simulation are present.

'j. r%

To completely and correctly specify an integrated simulation, we.i
consider different methods of describing the entities and their -

environment at various levels of granularity. We then consider how

,4P to incorporate orthogonal views into the integrated simulation so as

to guarantee the observability and controllability of the simulation. '-.. -
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A Knowledge-Based Simulation Model for Evaluating
Alternative Courses of Action .

Ina Shaznavi E303

The military community iscntnalyfae wt akn tmlydciin that

involve uncertainties, incomplete data, and alternative courses of action. The
problem solving process involves collecting relevant information to effectively
gauge several feasible courses of action in achieving desired objectives and
then selecting the best option. *

Conventional simulations for modeling and evaluating alterative courses of - ~
action have been limited in performance and use. This has been attributed to:
a) the programming effort required to build and alter the models, b) the models'

reliance on numerical problem-solving techniques to represent and explain be-
havior that may not be amenable to numeric computations, and c) the laborious
task of gathering and analyzing simulation data to interpret the results and .

evaluate the sensitivity of each option to "what-if" situations.
9..r

A Crisis Action Planning Model (CAPMOD), has been developed to demonstrate a
"knowledge-based simulation" approach to enhance existing military planning
models. This decision support environment integrates a discrete simulation with
a knowledge-based system and object-oriented graphics. To date, prototype ..

demonstrations have verified its ease of use in setting up and modifying course r
of action simulations and improved user understanding of simulation results.

The generic model simulates force movement flow processes from some point of .

/ origin to an objective area. It models a military movement network that is-
comprised of military bases, routes that connect bases, movement assets to move
force units between bases, and military assets to deploy. The modeling approach
is a discrete simulation based on queuing theory.

The evaluation of courses of action is complicated by such diverse, conflicting
and inter-related planning factors as resource requirements and availability, .,

terrain and weather restrictions, the disposition of enemy forces, and compe-
tition for resources due to concurrent missions. Therefore, modeling the ef- %-
fects of situational and exogenous factors on the deployment of military assets
is essential for accurate simulation. They must be represented in the simu-
lation and applied in reasoning about the acceptability or shortfall of a -.ourse
of action. - *

eN
The current model simulates delivery delays and attrition of forces due to
situational and exogenous factors. The effects of these factors (eg. terrain,
weather, and enemy action) on force deployment are actually expressed in rules
in a knowledge base. Rule representation was chosen because they are used by __

Z. k%
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military planners in describing force deployment behavior and they facilitate .

human understanding of cause-effect situations.

The production rules are invoked during the simulation process and when expla- .\\
nation of simulation results is required. It is insufficient to just compute
a measure of effectiveness (eg. the difference between the planned and actual .. -
accumulation of forces at an objective area). The user needs to understand
"why, when, and where" the plan failed so recommendations for corrective re-
planning can be derived and supported. This level of explanation is achieved%
by CAPMOD by applying rules for hypothesizing about the potential causes of
inconsistencies or variance in a plan to meet an objective. In-depth explana-
tion is provided by backtracking through a force deployment plan and the rules
that derive the simulation solution. The purpose of backtracking through aI
course of action model is to selectively collect relevant data that isolate the
cause(s) of variances in a plan.

rThe knowledge base also provides a symbolic representation of the objects, re--
lations, and behavior of the military organization that can be represented in
the model. The basic element for representing the objects is the unit frame. -

This simplifies the use of the model and maximizes user understanding of the -

simulation results because the concepts presented are familiar to the end user.

An object-oriented user system interface, which provides a graphical represen-
-~ tation of generic model objects linked to the knowledge base, further assists

the user in model building. ~~'-
Toeail mgrtefomon cure f cio mde t aohr the knowledge base .- *

provides a library of generic model objects (ie. military assets, their attri-
butes and relations) essential for representing a force movement network.
Scenarios are created by modifying attribute values (through the user and rel-
evant data bases). This provides a vehicle for the user to initialize and alter ~ I

the model entities and behavior, particular to a planning problem without al-

tering the generic model.

The formulation and evaluation of a course of action can be viewed as a
constraint -directed activity, where constraints serve to discriminate and re-
strict hypotheses generated. Constraint-directed reasoning is applied in val-
idating user inputs in creating the course of action model. For example, the. , .

user may specify the number of forces to be deployed from a base of origin, but
if another mission objective has been defined that demands these resources, the
system will alert the user of a conflict. Types of constraints represented are *,.

G resource requirements and availability.

Finally, a blackboard keeps track of current and past simulation events of
courses of action modeled. It provides the means to process and compare mul-
tiple alternatives in interim simulation runs.

.V.Future work will continue to focus on explanation, through the application of _

constraint-directed reasoning to support the comparison of multiple simulationOW*

runs. The CAPMOD system will be integrated with color graphics to augment the

usrsystem interface.
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SINSHART: .'.
DYNAMIC SIMULATION FOR ENGINEERING DESIGN, OPERATOR TRAINING AND AUTOMATED

CONTROL OF INDUSTRIAL PROCESSES

The secure operation of an industrial process depends on the human operator and
the real-time process control system. Both of them must perform well together. .,

The operator, in order to make decisions; depends upon the availability, the
timeliness and the quality of the information presented to him by the process
control system. If the control system does not perform well, the operator, no
matter how capable he might be, would have great difficulty in making the right -

decision. On the other hand, even if the control system does perform well, the
operator may not be psychologically or technically prepared to make the right
decision.

Due to the infrequency of occurrance of upset conditions in the process, the
ability of the operator and the control system to cope with these situations
remains untested. It is therefore quite clear that in order to efficiently
"train" the operator and also "program" the control system, it will be necessary .
to use simulation of normal and abnormal operating conditions, both in real-time
and faster-than-real-Lime situations. w

The subject of this paper is the concept of a fifth generation simulator called "{ "
" "SINSMART", combining well-proven techniques in process/process control

-- simulation, computer-aided-design (CAD), man-machine interface and data-base
management. Some features of the SIMMART simulator are: ""

1 Realistic integrated dynamic simulation of the process equipment arid process
control systems in real-time and faster-than-real-time.

20 Realistic emulation of the process control system including control

algorithms, configurations, graphics, etc... based on manufacturer's data.
. ..- ,

30 Realistic emulation of the plant equipment; including pumps, piping, control

valves, tanks, etc... based on manufacturer's data.

40 A computer-aided design (CAD) processor for the non-technical man-machine

interface. The process flowsheets (P and ID) are reconstructed using ICONs
and menus in a conversational manner.

50 All levels of simulation can be examined due to the "ZOOM" feature; from the
minute details of a PID loop to the overall operation of a unit process.

60 The on-line simulator comes equipped with an automatic model building tool
based on process measurements, statistical analysis and parameter estimation
techniques.

SIMSMART has been designed for all stages of a project, from a machine - "
rebuild to a greenfield mill installation; starting from the design engineering .4. "* "'-
phase through to plant start-up and commissioning. --

Don Waye E313
Applied High Technology Ltd.
e, Place Yvon Plourde, Suite 205
Charlemagne (Quebec) -40
J5Z 3EB .gq'.-
CANADA



SINSiART
Page 2

SINSMART begins with flow sheet balancing, process modelling and process
control design and simulation studies.

SINSIMART becomes an integral part of operations personnel training through
frequent "What If" sessions for process start-ups, shut-downs, production rate
changes, grade changes, etc...

SIMSMART monitors on-line measurements during start-up and commissioning and
can build and refine process models with the automatic model builder.

SINSHART updates automatically the process control emulation depending on
the configuration of the control system when any changes are made to either the
analog control system (distributed controls) or the discrete control system

* (programmable controllers).

SIMSMART's automatic features such as the process model builder and the
control system emulators provide a simulator whose high degree of reality will
not degrade with the inevitable ongoing modifications to both the process ".."

equipment and the process control systems.

..... .,. ..
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Abstract for Engineering Workshop AAAI 86 .-

Workshop on AI and Simulation . ,..

Richard M. Adler, Ph.D.
The MITRE Corporation %

Bedford, MA 01730
rma@MITRE-BEDFORD
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A serious need exists today for increased automation in the

Government's systems acquisition process. Automation refers to
software utilities supporting the generation and analysis of system
design descriptions. Generation encompasses design description
creation and modification. Analysis encompasses behavioral modeling
and formal methods for verifying design completeness, correctness,
consistency, and feasibility. I am directing a project aimed at
constructing a knowledge-based environment for developing such tools.
The initial prototype is being implemented on top of KEE, running in a .' '"Symbolics environment. Design descriptions for a military -r

communications system are being used as application test vehicles.

The basic architectural principles underlying the project are as
follows:

o Design descriptions are generated from a modeling '
library, using a simple copy-and-edit strategy to" :.

specialize model element templates to particular
designs. The library contains frames that
characterize prototypical C31 components (e.g., -v.
sensors, archetypal network configurations,
platforms, processors, operating systems).

o The user interface is highly visual in nature.
Primary building blocks include multiole windows,

.r,. pop-up menus, and, most importantly, icons
0 representing system design components (viz.,hardware, software, and data objects). Icons can be

browsed to different levels of detail: an option
offered to a user mousing an icon depicting a
component as a discrete entity, is to invoke a more
detailed window depicting that element's
subcomponents and their configurational structure.

o The functionality of the system is represented in
two ways: passively, via descriptive frames, and

actively, through behavioral simulations. The
simulations rehearse the event sequences in the

'A model hardware-software configuration that implement
system functions. Basically, the frames
representing components and data objects have state
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slots, whose contents are updated as system
processes transpire. The simulation model is
represented graphically through icon animation '%N.

sequences.

The initial stage of the project concentrates on qualitative, % N
nonexhaustive models of design descriptions. That is, KINDS of
functions, components, behaviors are modeled, rather than all
functions, components, and behaviors. For example, message-parsing
is depicted as a general parsing capability, rather than as a
complete (message-specific) field-by-field representation.
Similarly, host processor functionality is modeled in terms of
multiple workstations (i.e., several) rather than the full complement
that the complete requirements specifications call out. Models in
later stages of the project will simulate more detailed system
descriptions, in order to support exact, quantitative performance
analyses.

The attached diagram illustrates the architecture for the

behavioral model of a message-handling system. The level of detail
is one of a high-level functional specification. The model is

.* constructed so as to minimize presuppositions or commitment to
particular design implementations: functional specifications are
deliberately written in this fashion in order to leave contractors as
free as possible to devise their own architectural strategies.
Another behavioral model, in the early stages of development,
simulates a preliminary design of the message-handling system that
stipulates a specific architectural approach. Accordingly, this more
detailed model depicts explicit structures and behaviors reflecting
the posited system configuration and mechanisms.

The simulator is run by (object-oriented style) methods,
activated by messages sent out from units (i.e., frames),

representing a system clock, the message handler, and specific
functions. The attached screen dump portrays the functions .
characterizing the message-handling system organized in a taxonomical
hierarchy. The functionality of the message handler is encoded in
two separate knowledge bases, represented in terms of rules driven
from a forward-chaining inferencing strategy. One knowledge base
identifies the message with the highest urgency for processing, based
on time of arrival, designated message priority level (assigned by ,..
the simulator), and current processing state of the message. The '* .
second knowledge base determines the appropriate processing for the
highest urgency message.

An attractive feature of this model architecture is its " .

extensibility. The simulation can easily be upgraded so that the
clock polls an operating system unit on each cycle. The latter unit ,

then activates not only the AMH, but other applications hosted by the
central processor as well (e.g., a message-handling statistics

-%o -• •



utility). This extension could be implemented by revising the clock
polling method, adding an operating system frame, and by constructing
a knowledge base describing operating system control functionality:
the models for the message-handling system, and all other
applications, determine their own activities through reasoning based
on purely internal structures (viz., knowledge bases). The only O
nontrivial modification to implement the extension is the development
of the control knowledge base, which can be derived from the
operating system's behavioral (i.e., declarative) functional ''

description.

%* %
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Al Research At Martin Marietta Baltimore Aerospace

V. Benokraitis -.
A. Chande
M4. Dudziak
M. Hall
K. Noon

The focus of AI research in the AI and Simulations Dept. is on underwater .

robotics and signal processing applications. Specifically, our entire group is ...

.currently involved in the development of an Intelligent Controller for a 1
generic class of autonomous underwater vehicles (AUV). This controller (IC) is

~intended for operating an AUV by receiving input from a number of on-board
.. sensors, a world model which includes known data about ocean terrain and *:
<features and a mission plan that consists of a sequence of objectives which
the vehicle must perform. The decisions made by the IC are then communicated
as waypoints or destination coordinates to a real-time control system which is -'

.~responsible for operating servomechanisms and end-effectors.

Figure 1 below illustrates the comprehensive design of the AUV control /.

. system, showing the place of the Intelligent Controller.

(fig. 1 goes here])'

Several critical problems face the development of this IC system. First, .f

ware dealing with classical problems in planning. Mlore specifically, we are
.addressing the replanning and rescheduling of a real-time plan that will have
been established by human users and provided to the AUV. This plan, composed .. ~
.of objectives which are in turn composed of more elementary tasks, will have ~
.a number of spatial and temporal constraints for its successful performance.
.-In addition to the constraints imposed upon sub-plan tasks, there will be

J.~ other goals and constraints which are imposed by the vehicle mechanics or the ,

.,nature of environment and its missions. The job of real-time replanning
-becomes a job of deciphering new information about the environment,
coordinating that information with what is already known about the world and
~the current plan, and determining what changes should be made in the original
~plan in order to achieve necessary system goals and mission objectives.

A second major problem is that of data fusion, correlating the inputs from
avariety of acoustic sensors which will be the ALJV's only interface with the

-actual physical environment. Limitations imposed by underwater physics and the *

:restriction to acoustic sensing devices make this a more challenging problem Y
,-*than similar data fusion and object recognition tasks for terrain-following **--..

,and airborne systems. Data received by individual sensors consists of range
-*and bearing information, from which edges, surfaces and shapes must be
~.ascertained, in order to pass information about potentially significant

-bjects or ocean conditions to the Planner.

Martin 3. Dudziak E333 ->
Martin Marietta Baltimore Aerospace

* Mail Point 688
183 Chesapeake Park Plaz*
Baltimore, MD 21228
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Modelling the world is a third and very central problem domain to our
project. The world modeller is initiated with a map of the known world and -

..' representations for states of the vehicle (hydrodynamics, position, subsystem
diagnostics, etc.) and the ocean (thermoclines, currents). The model is .

updated by data which is received from the sensor acquisition system and also -
by data from the model which has been further interpreted by the planner. 7W

Our approach to the problem has been to use simulation as a development 'r %
tool for building and testing our intelligent controller design. The knowledge .-
domain for the AUV problem is a sparsely populated region; our task is quite C.:
unlike building a traditional expert system since there is no strong,

* established body of human expertise. Simulation offers an opportunity to not
only demonstrate the performance of the system but do the experimentation and . .
exploratory programming necessary for this kind of problem.

The Intelligent Controller Development system (ICDS) is the outgrowth of
this philosophy of learning by simulation. It is strongly influenced by the

' project development environments provided in Lisp machine workstations and in
particular by our department's selected AI system-building tool, Knowledge _
Craft (Carnegie Group, Inc.;. Through the ICDS we are designing and assembling "'
our Intelligent Controller and testing it with modules that emulate the other
functions of an AUV. Figure 2 shows how the logical parts of the ICDS fit
with one another.

[fig. 2 goes here] ,@
6%

The ICDS is being implemented on a Symbolics 3670 with an 8-bit,
-.:, 256-color graphics system. Critical software being used besides Symbolics

Lisp include: Knowledge Craft and the Symbolics family of graphics packages .
( S-Geometry, S-Paint, S-Render, S-Dynamics). The ICDS enables developers to
run a simulation which exercises the Intelligent Controller and produces a -

color graphics display in one of two basic modes:

3-D (showing a cubical volume of space) and
"" .Geographic (showing an 'aerial' view with land masses and other

features shown).

The displays are modifiable by a number of window-oriented menus and selectors .
which are accessible to the user through the main system console.

The user may, by using a menu-oriented interface, make changes to the
specifications for the vehicle characteristics (e.g., hydrodynamic
characteristics), world environment (e.g., placement of man-made and natural
objects on the sea floor) and mission plan (objectives and specific tasks,
global mission rules and goals, etc.). These changes are made using a simple
text editor, enabling non-Lisp-specialists to operate the system.

- forOther features being built into the ICDS provide capabilities to the user
for 'stop-action' viewing of internal program states and data structures and
for run-time production of various history files showing the activity of the ,.
controller subsystems at different levels of detail. Figure 3 gives an
illustrate of how two states of the system console will appear to the user in
the course of running the ICDS simulation.

(fig. 3 goes here]

?7
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The ICDS will be operational in the later part of 1986 and is expected to *.,play a primary role as a development tool for building the next-generation .1

Intelligent Controller that will operate onboard a sea-going test vehicle.
Our group is exploring the applicability of concurrent processor (MIMD-type)

b machines for meeting the real-time performance spped and interprocess

communication requirements of a fieldable AUV controller.

Other areas of attention being developed as part of the MMBA long-term ...
applied-AI thrust include the following: ...

-advanced signal processing and interpretation

battle force information management .. : [..

hierarchical planning for manipulator robot control systems .. .-

- ASW multiple sensor deployment and data fusion _.

Our major focus is on naval and underwater applications, of which the AUV
project is a crucial element. As a consequence of the systems engineering .-.problems these projects engender, we find ourselves working on some of the
most basic and long-standing issues in Al research. This is clearlychallenging but also very rewarding as we take new steps forward.

--- M. Dudziak . .
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SAUlY Intelligent Controller Development SypteM
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enlarged incrementalUy byj clicking- __ _________________

rion the directional arrows Which Se Mission Nam: Search- 2
are In Wh upper left corner of M" Objective: Transit (XYZ (200200)
ery active window for which AS' Objective: Search (Spiral",

size modification by the user is Objective: Transit (XYZ, (30,30,0)
,J appropriate. The arrows are kept Sta Objective: Signal -to -Mission -Control

in the window (mnu) at theDe %
-~highest level but apply~ to the

Wi vndovwhere the cursor is3
E~currentlyj located.

-~User edits and then issues cmd3
to saveaend go up to prey, level. CR1 Listener I AUY System Messages

Note that user can choorse an existing Mission and just run it as is, create a new one from scratch, or go
into the Plan Editor and via a nieta-x tyjpe command bring up an existing plan for editing. Similar editor
commands let the user save an edited plan or abort and go back to screen 1.41.

Note also that byj mouse click or keyjboard code a user can alwayjs abort the current level of a task and getle
back to the previous level. A total abort of a task is accomplished byj clicking on the current task cmd-icon.

AUIY Intelligent Controller Development SyjstemUsrasiGaricotrl
(9) G)) moved mouse and clicked on

____________________syjstem Monitor icon, bri ngi ng up

GRAPHICS CONTROL SYSTEM MONITORtatassino.9

Mode:3-0 tClick on Mission Planner option
* Sensor Aocuistion

Environ. Analysis5 to start monitoring activity
*00 Worl~ ~- s- ~d Moee (inter -module message traffic,

Missiont Planner entries into World Modeller,
7. 00 0e firings;In short, a istory

of the control path and data path .

acivities). This is useful not only .*i'

for development and debugging
of the ICDS but also for learning
What is needed for the real- world
operational Intelligent Controller.

CR1 Listener I AUlY System Messages . >

ft A

7,-



2-

[Discrete-Machine [Drill
Subclass-of Subclass-of

Value: (Machine) Value: (Discrete-Machine)
Load-event Operation-event

Value: (dmload) Value: (drill) -
Operation-event Operation-time

Value:(dmoper) Value:(lOsec)
Operation-time .

Value: (2sec)
Unload-event ":q

Value: (dmunload)

Figure 1: Example representation of model objects

object and all of its event methods and attributes to be stored together with the added

feature of allowing a taxonomy of objects with inheritance capabilities.

A discrete-event simulator for this representation would maintain a calendar of events,

each of which consists of the object of focus, its event, and the time the event should -

occure. The execution of an event is accomplished by sending a message to the event

method at the focus object. In the frame-based representation environment discussed

here the event methods can either be represented by proceedural knowledge or rule-

based knowledge (51

Truth maintenance research [4] [3] involves maintaining the truth of facts and any

inferences, justifications, that the truth depends. Justifications may, in addition, be, A

used for hypothetical assumptions as well as non-monitonic assumptions for facts.

Many of these systems also maintain multiple contexts for these facts that represent

multiple, possibly inconsistent, states of the knowledge base. The truth maintenance4.. ...

system discussed here [12] is integrated with the frame-based representation - '

environment and incluces an extension to the traditional tree context mechanism [10]. :

This extension incorporates a tree context mechanism with the ability to merge

contexts. ."

.* When integrated with knowledge-based simulation, this truth maintenance system . -

. provides the capabilities of backtracking, parallel simulation, and causal tracing of

simulation models. The first two capabilities are made possible by using a current in

.-- %
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context, where all actions of the model take place, and by checkpointing model :

execution at various intervals. Checkpointing is accomplished by spawning a new r %

context which is a child of the current context. Execution of the model is then i -

continued within this new current context. An example of this is seen in figure 2, where. Wr.

each context,

START
* context forevents 1-15

context for
events 16-30

current

Figure 2: Checkpointing

world, contains all of the events and their subsequent actions for 15 consecutive events.

- . At the end of 15 events, checkpionting takes place, a new context is spawned and made

the new current context. Of course, the interval of 15 events was arbitrary.

Backtracking is accomplished by interrupting the model, spawning a new context off

of some previous context, and making it the new current context. Execution of the

simulation model can continue from the new point. Changing the current context in

this situation essentially changes the state of the model to some previously saved state.

An example of this can be seen in figure 3. This mechanism can be used, for example,

to spawn new contexts from some saved state and make structural and/or parametric .,...

changes. With these changes made, the model can be run and then compared to the b

results of models without the changes. Also the results of model changes can be seen

without having to completely rerun the model from the beginning.

Parallel simulation is accomplished by maintaining multiple states of the model in

., - separate contexts. The execution of the model can be swapped between the contextc .. .

intermittently. That is, the simulator executes in one context, advancing the state 4 .

the model in that context, for some predefined interval of time or number of events,
,...- *..

,,.S
- .:. . .. .. .-...- --.-
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EOLD STATE RECOkERED

NEW CURRENT
CONTENT :'-

OLD CURRENT
SCONTEXT

Figure 3: Backtracking

then swaps contexts and executes in another context for the same interval. This

concurrent execution of multiple models allows for real-time comparative analysis of

simulation models.

Causal tracing of the simulation model is accomplished through the recording of

justifications. Actions taken within an event can be justified by the event itself as well

as any conditions on that action. Also scheduled events can be justified by the action4

scheduling the event. By recording these justifications a complete causal tracing of any - -

aspect of the model execution can be accomplished. These causal tracings can then be

graphed as seen in figure 4.
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possibly behavioral abstraction. One approach to causal tracing for knowledge-based

simulation [1] was to collect, within an event, all data references and modifications and

causally link them to that event. A major drawback is the black-box assumption of

causation between an event and the references made within the event. To deturmine a

better estimate of causation, this data was collected over many event executions and

statistically analyzed. The current approach avoids that inaccuracy and inefficiency by

P" using a truth maintenance system which can record each action and all of the inferences

leading to those actions within any event.
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AN AUTONOMOUS VEHICLE WORKSTATION

*Artificial InelgneLaboratory

Dallas, TX 75266

(214) 995-0668

Over the past three years, TI has been developing an Autonomous Vehicle
k~Workstation (AVW). The purpose of the AVW is to provide a framework and
simulation environment for testing algorithms to control autonomous

~yvehicles. Currently, the system is being used to support a robotic
air vehicle program, a pilot's associate program, and a multisensor
fusion project. The AVW consists of a simulated world, a d)atform,
and various "crew members" that communicate with the simulated world through
the platform. The current set of crew members consists of a premission
planner, an observer, a pilot/commander, and a platform controller.

.~The simulation environment coordinates the updating of the crew-members,
Ithe platform, and the simulated world.

The simulated real world consists of a surface representation (either
Sa terrain map or mathematical model), individual object models, weather
.~definitions, and various methods for interfacing the platform with the
Sworld. Objects in the world are built from a hierarchy of basic object
definitions. The objects currently available include various air and
land vehicles, stationary objects for representing landmarks, transmitters,

.etc., and line and area objects such as roads, fields, and ridges.
SThis library of object definitions can be used by developers to create
their own specialized objects to be used in a world environment.

'As an example, a user interested in developing a model of a highway
can use the predefined definition of a 'road, and add attributes
and methods to this definition which are unique to highways.

suhA platform model is constructed from a number of subsystem models,
suhas a flight control system, comm-nay system, stores system, and -

sensor system. Basic models for each of these subsystems are provided and
may be expanded depending on the requirements of a particular mission to
be simulated. The AVW currently provides some detailed subsystem
*definitions for air vehicles that behave like an F-16.

The premission planner creates "safe" paths from one point in the
simulated world to another. Safe paths are determined by consideration of ,
several aspects of the premission state of the world, such as, terrain,
user supplied mission goals, and a priori knowledge of obstacles.
The AVW provides templates for the other crew members that provide the
minimum functionality needed to run simulations. Users of the AVW
develop and test Al algorithms within the simulation environment to
increase the functionality of the crew members.

A configuration and graphics manager controls the display of
information to the user. An optional color screen can be used to display

Sadditional information. The displays can be configured as desired to
demonstrate the functionality of individual crew members or the state
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!b~ of the platform, simulated world, and simulation environment as a whole.
A dashboard is provided to change and display the state of the platform.
Various methods of viewing the simulated world that are provided include
an "out of the canopy" view, an "eye in the sky" view, .

-:and a plan/contour view.

The AVW executive manager regulates the flow of information and __

communication between processes running in the simulation environment. The
simulation environment allows for processing modules (i.e., crew members,
platform, simulated world) to reside and run on one or more processors. \ .

.- The environment is general enough to run a simulation consisting of an .~

?.arbitrary number of processes distributed over an arbitrary number of Lisp
machines.___

owe

* Developed on TI Explorer Lisp Machines, the AVW is almost completely
object oriented. All modules and sub-modules are instances of particular C:.-

.. object definitions, providing applications programmers with easy and
efficient means to quickly develop systems which either replace or augment
the basic default crew member modules which exist in the AVW. Since the

.. objects all communicate by means of message passing, module interfaces
can be be designed which allow easy insertion of user's applications into
the overall AVW system.

4e Among the specific areas currently being addressed in the dvlpeto
L the AVW are:-4

World Object Definition: The problem of representation of data in the
simulated world environment is being investigated. Methods of storing
or retrieving positional data in terms of latitude and longitude
in addition to Cartesian coordinates are being developed. Issues concerning
display and retrieval of "world information" are being investigated,
including digital map display techniques. Also, we are interested in

-. world modeling techniques... i.e. given the simulated "real world", how
Sdo we best represent a reasonably accurate model of that world? --

I nter-module communications: We are addressing in depth the problems of
distributed processing in multi-machine environments. In particular, we
are developing mechanisms which will allow developers to have "crew member"
modules residing on separate machines and communicate with the simulated

/. world environment and other crew member modules via inter-machine message
,- passing.

*-Time: The representation of the flow of real time is a central issue in the
d evelopment of the simulation capabilities of the AVW. With the possibility
of different system modules residing on separate machines, the need to
coordinate their time with all other modules' becomes paramount.
We are developing a scheduling module which insures that each module has the -.. *

same notion of time; i.e. one module does not think that 10 seconds have
elapsed while all other midules think that 20 seconds have elapsed. = N

As mentioned above, the AVW is currently being used as a simulation testbed
for a number of projects, including a robotic air vehicle project (RAy).

S The RAV group has developed their own jet aircraft vehicle object built
ufrom the basic default object definitions provided by the AVW. Using

this specialized vehicle definition, the RAV group is developing an
expert piloting module which will attempt to fly the vehilce in the

SAVW's simulated world. This piloting module and a "pilot-vehicle
Sinterface" reside on two machines while the AVW resides on a third

machine. Using information concerning the state of the aircraft .(obtained

.~~~- .. .. . .
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from the vehicle in the AVW environment), the piloting module makes
high-level flight decisions (i.e. bank left, climb 45, etc.).
These "flight plans" are sent to the pilot-vehicle interface which in
turns sends low-level commands (i.e. stick forward 2, left rudder 4 etc.) ~-' ~,

to the vehicle object in the AVW environment.
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Simulation-Based Robot Cell Diagnosis ,
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Artificial Intelligence Department
Research and Technology Laboratories %
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,:- 1. Introduction -."-,
,.nt Design and diagnosis of robotic assembly cells are important tasks for factory automation, W.

especially for automatic assembly line design. Robotic assembly cell failures may down a fac- .-
tory production line and decrease its productivity. An appropriate diagnosis system, whether it
is an on-line or off-line diagnosis system, is required [Barbera84] [Chiu85] to maintain high pro-
ductivity by reducing the production line down-time caused by a robot cell failure. This
research explores simulation-based robot cell diagnosis.

Problem characterization is carried out with a laundry pump motor assembly cell. The
functional structure and operations of the robotic assembly cell is qualitatively simulated with
the model of synchronous parallel operation. A causal network is constructed to represent the % -

causal relations between the robot control program and the physical cell environment. A graphic
process editor and an automatic information translator are system design tools. Causal reasoning
is mainly used and heuristic rule-based reasoning is used for conflict resolution in deadlock cases.

2. Robot Cell Modeling and the Cell Failure

Robot cell operations are characterized as synchronized parallel operations. The robot
and the physical cell environment, i.e., various parts carriers, fixtures etc., operate in mutually
synchronized manner. Figure 1 shows two synchronized processes.

Pr oce 1 ,.,-.Process 2..

J.0

Devices 
.

,..2 -j$1.

"~~-' '

,.,..a~ •o . qa..

tt - Fig. I Synchronous parallel operation example with two communication lines. 14; ,

Each process consists of a circular sequence of tasks. Once the preconditions of a task are
satisfied, the process can start and execute that, task. The task may be finished without any

%...-..-
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interruption or may be suspended to wait for other conditions to be satisfied during the execu- ~'
tion period, ac process is synchronized to related processes. Synchronization between
processes is obtained by sending messages through communication lines.

In the robotic assembly cell, various actuators an sensors play the role of communication -

line. For example: the control program outputs at control signal, this control signal is amplified
to actuate a solenoid, which in turn actuates an air valve. By actuating the air valve, the
related mechanical action occurs and is noticed by a sensor. The output of the sensor is routed .; ,~

back into the control program. Thus, the robot cell can be represented as a causal network
linked by the process task sequence and by these communication lines. A robot cell failure
occurs when one or more of the communication lines break. In such a case, processes get into a
deadlock state waiting for signals from each other. Therefore, robot cell diagnosis, in this con-
text, is first identifying the broken communication line and then locating the faulty physical
device of that line.

- However, there are two questions to be answered in this approach for the diagnosis system .

design. The first is how to get the diagnosis system model; the system model can be constructed
in the robot cell design stage or can be constructed based on the flowchart of the robot control % '.

program and the existing cell environment. In the design stage, the assembly flowchart or state ~
transition diagram can be directly mapped into a synchronous parallel operation model. How- -

ever, the latter is considered to generalize the diagnosis system design. The second question is ,.

how much detail each communication line must be modeled; this cannot be answered clearly yet,
it is a question of required diagnosis level. The more detail the diagnosis gets into, the more .
detail of each physical device model is needed. This can be expanded to the electronic equip-

4. ment diagnosis level for each device or it can be simply modeled as an object variable of the
control program. The electronic equipment level diagnosis is not yet fully considered. -.-

3. System Implementation and Reasoning I

Two kinds of information are utilized for the system implementation. One is the robot
control program and the other is the information about the physical cell environment. The sys-

* tem model is 'constructed by performing process definition and process segmention for task
sequence generation on the robot control program. Then the necessary information for robot .
cell diagnosis is automatically extracted from the robot control program and incorporated into
the system model. From the cell environment all the causal relationships of physical devices are
obtained. The causal relationships of physical devices in the system model can be checked with-

* a simulation module.

Once the system model is obtained, the~ sy'stem reasoning is straightforward in the
simulation-based causal reasoning fDavis84J [Dekleer83]; it starts reasoning in data-driven

*fashion. All the available current status information is collected in the beginning of the diag-
nosis. Suspected communication lines are selected using the current status data, i.e., process ~
status, software flags, and sensor information. If no more data is available for diagnosis, then
heuristic rule-based reasoning is applied on the local device. The present system reasoner has a
hierarchy, which corresponds to system model structure. Top level reasoner localizes the failure-.

* in the process level and passes the result to the local reasoner. Then the local reasoner locates '

I ~the brokeii conmnunication line and the corresponding physical device. Device-specific reasoners
are also being considered in local reasoning.

A 4. Conclusions

Fifteen faulty cases were generated by a robot cell engineer; physical sensors were cut off
or assembly parts were removed intentionally. All cases were diagnosed correctly in the level of
task and communication line.;Z

However, propagateds fault are not diagnosed completely. When one of the physical ~
switches was deactivated, the diagnosis system localized thle fault in the physical device block. '

Siince the sensor and the activator are modeled as one physical device block in the present sys- %*
tem, the system could not detect the exact faulty device. Also, if a sensor is blamed then it

~~.a2.&~~~ . . . . .~ .. . . .~ .E. .~ .
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should be checked whether the sensor is physically broken or if the sensor activation did not
occur. The system simulation model also could not resolve this ambiguity. It can be diagnosed
correctly by human operator intervention or by running the real robot cell with the proper dev-
ice testing program. No built-in tests or physical tests are considered in the present system.

Although the system is in a refinement stage and the number of case analyses is not
enough, it is shown that the simulation-based causal reasoning can localize the fault to the phy-
sical device level and the system can be expanded easily to include various physical device diag-
nosis. Causal reasoning provides a means of propagated error analysis. Also, system design aids
such as a graphic process editor and automatic information translator proved to be necessary
for information intensive diagnosis system design. .. ' .. "
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Introduction

My interest in simulation pertains to my research in the area of applying Al techniques to Software
Engineering A basic premise underlying this work is that a sysEem that automates significant parts of

.

the software development process must be domain-specific in order to interact effectively with a user

who is an expert in the application domain but computationally naive. [Barstow85] Thus, facilities are OF

needed for representing and reasoning about domain knowledge. My current work investigates .

these problems in the context of software that controls remote devices (e.g. oil well logging tools).

For such software, a key part of the needed domain knowledge is knowledge of the device itself, for

which we have developed a knowledge representation formalism. An important requirement on the

device representation is that it support simulation. %

There are two reasons why simulation must be supported. The first is for software engineering .I,

purposes: to facilitate analysis of software requirements, and to form part of the software testing -

environment. The second is to facilitate the reasoning processes involved in writing the software.

Below I will briefly describe the knowledge representation formalism and then discuss these two uses.

The Knowledge Representation Formalism

The world consists of a set of interacting devices. Each device may be considered as both a primitive

and as a composite object. As a primitive, a device's behavior is described in terms of states and

transitions As a composite, a device is described by a set of interconnected, component devices Every -Th

device has well-defined interfaces that dictate how it may be connected to other devices.

% %

-..-.
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The method for representing primitive devices is a finite-state formalism augmented by an assertion

language. A device has a set of attributes, each a function of continuous time and of other attributes.,-

A state node has a predicate over attributes of the device, which is supposed to be true of a device '-

whenever the device is in that state; since the predicate may involve time, it can specify not only an .-

invariant on the state but also some behavior that is to take place in that state. A transition node has -

a pair of predicates on the attributes; when the first (the trigger condition) becomes true, the

transition fires after which the second (the result condition) is asserted.

Property Sensor -

value Link

DEVIE ISignal Command1

message Link

in a composite device description, there are four kinds of interfaces connected by two kinds of links A

property interface of a device makes the value of one of the device's attributes continuously available

to any connected value links. A sensor interface of a device makes the value of one of the device's

attributes constantly equal to the value coming in on the value link. A signal interface of a device is a

place where messages, the values of one of the device's attributes, are emitted at discrete moments in

time when some assertion becomes true. A command interface of a device is a place where messages S.

are received and made the value of one of the device's attributes at discrete moments in time,

resulting in an assertion's becoming true at that moment. A link has an associated time delay, so that '0

the value of a property at time t is available at the sensor at time t plus a delay, and a message sent at-

time t is received at time t plus a delay.

The following are some points that we think are interesting about this model:

1. Clean interfaces separating devices. Device description is solely in terms of its private attributes.
Links have no semantics other than passage of time..

2 Continuous links used for accurate physical description. Simulation can be done to any desired-

precision and is not predetermined by the description. The same is true for continuous time.

simulation can be executed to any desired level of time granularity

3. Equivalence of within-device and between-device semantics. A message link is like a transition, . -

described by two assertions, but with a time delay A value link between devices says that an - . %

N. 
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attribute of one device is a function of an attribute of the other, the value of the latter being

time-delayed.

Simulation for requirements analysis and testing "'
Using Al knowledge representation techniques for describing requirements has been discussed in -.

[Greenspan84] and [Borgida85]. In the case of device control software, it is obviously hard to think

about requirements for controlling a device without understanding how the device works The ability

to simulate the behavior of the device significantly enhances one's ability to understand the device

and also to understand what the device control software should make it do. ''

' As a starting point for an experimental implementation, we have devised a graphical editor for

representing devices in the formalism described above. Placing graphical objects on the screen causes -

the creation of objects in a device knowledge base, including all the structure needed for the A-A

simulation The graphica! objects are also the basis for animating the simulation: manipulations of

N the device representation cause user-programmed changes on the screen.

Each device or component of a device has its own local time attribute ("clock"). Advancing a

composite device to some future time t involves advancing each of its components until the

furthest-behind device has advanced to t. Advancing a primitive device at some resolution involves

doing the actions implied by the assertions associated with states, detecting trigger conditions, and

firing transitions. We still need to consider what kinds of simulation control, e.g breaking, undoing,

and backtracking are needed, based on what information we want to glean from the simulation-

b-..-..

Simulation, of course, can also be used as a basis for testing the device control software. It is often

I o  much easier to test software with a simulated device than in the real environment (e.g. with oil well

logging instruments in a borehole). [Barstow86-

Reasoning About Devices

We are interested in automating parts of the software development process that we call

formalization, which begins with an informal specification of what the device control software must .

do and results in a formal specification. An informal specification is an imprecise, incomplete

description of the program to be written, while the formal specification is a precise description of '

.--%--- -.. . . . . . . . . . . . . . . . . . . . . .- - . %" P .P °
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what the program should do but not how it should do it. (Such concerns as computational tractibility

and efficiency are relegated to a different part of the software development process,
implementation, which involves going from a formal specification to code in some target language )

The device model gives a formal model in terms of which to express the formal specification.

Moreover, we believe that there is sufficient information in our model to enable a large part of the

process to be carried out automatically. For example, a requirement might be stated as getting the

device from an initial state into some desired state. First, the state-transition diagram can be analyzed .

to find possible paths. This gives a sequence of conditions that must be made true of the attributes in

order to accomplish the goal. The problem is to then figure out what commands of the device can

cause these conditions, and finally, what signals can be emitted by the controller to cause 'these

commands to be executed.
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Our research activities concentrate in the following directions: 
,2;

1. Unified Simulation Knowledqe Rereentation•""

The world views of discrete event Simulation are highly compatible, -. --i

with the representation schemes of Artificial Intelligence (0 K'eefe, °. ,

. 1986). Object-oriented programming (LOOPS (Bobrow & Stefik, 1983 )
FLAVORS (Weinreb et. al. 1983), TI Scheme (1986)) can be viewed as . %_

. " providing a Computational basis +or the frame hierarchy (Minsky, : ..

., 1975) by allowing the programmer to associate methods with objects ---
which are inherited just as other slots are. It is not surprising "'.-'
therefore, that languages are being developed to express both the ....- ..
dynamic knowledge of discrete event formalisms and the declarative .:•-z
knowledge of Al frame paradigms (Klahr, 1986; Reddy et. al. 1986).

,- Otur research objective has been to unify these developments in a more "'

F.- undamental paradigm which draws its inspiration from the systems .
theory view of the world (reviewed by Pichler, 19B5) and stems from S-
the system theoret ic represent ati on of Si mul ati on model s for
multifacetted modelling methodology (Zeigler, 1986).

System theory distinguishes between system structure (the inner

constitution of a system) and behavior (its outer manifestation).

,.- Regarding structure, the theory has givyen us the concept of """"
decomDosition, i.e., how a system may be broken down into component .:..

~/stems, and cou~jing, i e., how these components may be combined to
reconstitute the original system. Thus decomposition and couping
should be fundameentat schems of Anfcle Inele tion scheme.
System theory however has not focussed itself on a third fundamenta

kind of relation, ta1onomi6c, which concerns the admissible variants . "
of a component and their specializations, exhibitted for example, by

*- the generalization hierarchy of frames.oa m d wbe

As a step toward a complete knowledge representation scheme, we have

combined the decomposition, taxonomic, and coupling relationships in
a representation scheme called the evetfm i sinsan ute eclaatigler,

k d1984), a declarae paaim ela d 18 Rame-theoretic and.-

object-based representations Tho u y se contains models which are

procedural in character, epre ssed in classical and Al-deri vead- fformalisms mentioned earlier The entities of the entity structure

refer to conceptual components of reality for which models may reside

in the model base. Also associated with entities are slots for
attribute knowledge representation. An entity may have several

At a_eSst_es, each denoting a decomposition and therefore having several

entities An entity may also have several soecializations, each
representing a classification of the possible variants of the entity

sThe generatide capabilti of the entity structure enables convenient

bgeneration and representation of model attributes at Multiple levels
of aggregation and abstraction. w h n s esi v a

*. f A set of tools has been developed to facilitate development and

operatintion sa system entity structures(Ziger"

%

I " ,.. 1984),"..'.. a-:. declarative''.'.'... scem related -''. to fr-theoretic.- and'..-. ••-



2. Use of the m Entity Structure in Simulation Model S h"

A primary application of the above knowledge representation scheme is
to objective-driven development of simulation models (Zeigler, 1984). "
In this approach, a simulation model is synthesized from components
in the model base based on modelling objectives. The objectives guide
a pruninq process which reduces the entity structure to one or more
composition trees from which models may be hierarchically built up
from atomic components. Constraints placed on the aspects of the -
entity structure restrict the family of possible pruned structures "
for more informed search. The approach requires that the model base
be populated by models in the DEVS formalism, a nodular discrete
event model representation enabling hierarchical assembly (Zeigler,
1984). An environment of this kind is being developped for the domain
of local area network simulation, intended to enable a designer to .
rapidly assess the performance of a wide variety of alternative
network designs via model synthesis and simulation (Sevinc, 1986).

Application to Distributed Simulation

Research in distributed simulation, the use of multiprocessor "
architectures as simulation media, has concentrated thus far on
ex'ecution of a single model on a network of processors. Yet in
practice, simulation experimentation most often involves exploration
of the behaviors of a related family of models. Our research aims
to develop a methodology, centered on the entity structure/model base
concepts, to map a variant family of models onto a hierarchical
simulator. Several Ph. D. theses have developped the ground work for

-N this aporoach supported bv NSF grants (Concepcion, 1984; Baik, 1985:
Rozenblit, 1985). In current work, we intend to extend this .
methodology to enable variable structure simulations, in which the
model structure may be changed according to intelligence embedded
within the model itself. A demonstration project of this kind has
been completed in which a work-load adaptive multiprocessor
architecture is simulated in SIMSCRIPT, a conventional discrete event
language (Zeiqler, 1986). A prototype of a distributed hierarchical
simulator, in which variable structure models may be specified, has
been completed in the SCHEME language, using its object oriented and
"first class" object handling features.

df .
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Introduction 
-.

The goal of the Molgen group at Stanford is to build a computer system which can reproduce the

discoveries of Prof. Charles Yanofsky of the Stanford Biology Department. Prof. Yanofsky discovered a novel _

mechanism of gene regulation in bacteria. For a program to make these discoveries, it must be able to represent

an initial theory of this domain, plus new theories it generates given the experimental results which are its

inputs. These theories describe how bacteria regulate their expression of a certain group of genes based on the w

concentration of nutrients in the cell's environment.

Our group has begun to apply the techniques of Qualitative Simulation (QS), as explored by [De Kleer

84, Iwasaki 85, Forbus 84, Davis 841, to the problem of expressing these theories. Applying these techniques to ,

a real-world problem has led us to identify limitations of these techniques in addition to those which have -. 4

previously been identified [Kuipers 85]. Our current research attempts to rectify some of these shortcomings. It

has led us to re-consider QS from a more general perspective, which suggests natural means of augumenting its

techniques. We begin by describing this perspective.

A Perspective on Qualitative Simulation
A number of motivations have been expressed for the work on QS, most of which address shortcomings in

classical quantitative simulation techniques, such as:
4

1. Quantitative information about a particular system or problem instance is often not available, yet
people are often able to make sensible predictions without it.

2. Quantitative simulations often require large amounts of computation time.

3. The belief that quantitative information often obscures the "essence" of a situation and cannot be
used to generate explanations of device behavior.

4. The desire to develop a naive physics of the world to comprise part of the common sense knowledge
of intelligent systems.

We share all of these motivations save the last one. The theories which we will represent should exhibit

not naive problem solving performance, but expert-level performance.

We will shortly consider each of these motivations in further detail, but we first describe the core ideas of

QS.

In quantitative simulations one identifies the set of parameters or state-variables for the system one wishes

to model, writes a set of equations which describe the interactions between these parameters, determines initial
•. 

.',...

values for certain key parameters, and cranks them through the equations to derive values for the other

parameters. QS uses exactly the same approach, with two exceptions. First, instead of giving parameters

quantitative values. QS variables have qualitative values such as -1,0.11 or {low.normalhigh. A qualitative ..

V I ..• '.-
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calculus is then defined to determine how these values are propagated through constraint equations. The

second difference is that classical quantitative simulation programs have a procedural representation (e.g.,

Fortran code), while QS programs have a declarative representation which can be reasoned over. I,

Current Goals of our Research
We now consider how the above techniques relate to the described motivations, point out shortcomings, '

and indicate how our work will address them.

A more general statement of goal (1) is that programs should be able to solve problems using varying

amounts and types of information, producing the best solution possible given the information available. They

thus must be able to represent all the information which might pertain to a given problem. Current QS

programs reason with one type of information: qualitative values. fKuipers 85) indicates the limits of this -

approach; our domain in particular requires the increased precision which Kuipers shows QS cannot provide.

and some quantitative information is available. (Forbus' Quantity Space representation [Forbus 84]) provides a ,

partial ordering over qualitative values, and in is a step in the right direction, but more expressiveness is .

required still.)

We are thus exploring the space between quantitative and qualitative information for other techniques

which can represent the information available, for example, a number times a qualitative value, e.g., "what U
happens if I double the normal concentration of this enzyme?" Note that our viewpoint implies that a simulator

should be able to accept a mix of values with different types of precision, i.e., some values might be quantitative, .

some qualitative, some in between.

Next, consider that just as information about parameter values might be imprecise, so the relations between
K-J

parameters might not be known precisely. Current approaches write arithmetic constraints between parameters.,

e.g., P - QIAl + Q2A2 (Pressure equals a sum of flows times areas). In fact, knowledge about the form of a

relation varies: we might know:

" Only that A varies as B, i.e., when B increases, so does A. .~ -

" A varies linearly, as B.

" A varies linearly as B with a known constant. No it

Our bimulation system (based on KEE) views both parameters and the relations between them as complex.

entities which are represented using one or more frames. The information stored about a relation indicates

whether it is bi-directional or uni-directional, its sign, the mathematical form of the relation if known, and the

values of any relevant constants, if known. If the mathematical form of the relation is not known, corresponding

values of its parameters under landmark experimental conditions can be recorded, along with rules for

2, .
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interpolating between these values. Biologists appear to use this technique when reasoning about enzyme

kinetics problems, for example.

Parameters can have one or more types of values (qualitative, quantitative, or the combination discussed

above). We also represent knowledge of their landmark values for certain experimental conditions, their normal
5)'

ranges of values, and their units of measurement (e.g., "molecules per cell"). These provide constraints on the

values the parameters can take, and the relations they enter into (i.e., units must combine correctly). They also

make it easier for us to change our simulation clock.

Currently we are working on code to actually propagate these parameters through these expressive

relaion toallow us to predict how the quantities of different molecules changes in the cell over time under
different experimental conditions.

Techniques which have been developed to achieve goal (2) include limit analysis (Forbus 84] and

aggregation [Weld 851 - both involve induction over a cyclic simulation to predict future changes without

simulating many intermediate states. We plan on building a simulation which can be run at several levels of

detail independently to provide both faster problem solving and to help make the discovery problem more

tatbe(ap8,Karp 86]. Some work has been done in this area [Davis 841, but there is still a large space of '

* .,- possible simulator designs to be explored [Karp 86]. For example, objects, or the processes acting on them, or .

some combination of the two, could be represented at multiple levels of detail-, what is the appropriate choice?

How does one choose the appropriate level of detail for solving a given problem? Can a description at one level 5

of detail be compiled or expanded automatically to produce a description at another level of detail?

We have two hypotheses regarding goal (3). First is that the explainable nature of QS systems is probably

not due to their use of qualitative values, but to their use of declarative representations: declarative quantitative4

simulations could also be explained (though perhaps not as simply). Second is that a qualitative simulation will

almost always imply naive performance; we believe that most human experts utilize more precise information in

addition to their qualitative models. Our research will help us evaluate these hypotheses.

Summary

4" Our approach to QS can be summarized by saying that while a number of techniques for QS have been

developed, much work remains to be done in exploring how they fare when confronted by real-world problems

-or how to confront real-world problems with a coordinated combination of these techniques. In addition, by

producing a generalized description of these techniques we will gain a better understanding of how they relate -

_ to one-another and to quantitative simulation.

1I~ 3
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Workshop on Al and Simulation

Kasim Sinnamohideen Stephen Zvolner
Controls Research Controls Research .....

Johnson Controls, Inc. Johnson Controls, Inc.
Milwaukee, Wisconsin Milwaukee, Wisconsin

The principle goal of our research activity into qualitative simulation
is to represent a significant subset of knowledge that experienced ..

building operators use in their daily activities in operating and
managing the heating, ventilating, and air conditioning (HVAC) systems
of a building. These mechanical systems include chillers for supplying
cooling, boilers for heating, and fan systems for ventilation, among
others.

Operators running physical plant equipment make use of qualitative
models in helping them to understand and properly operate the plant
equipment. The rationale for our investigation into qualitative "."
simulation methods is to attempt to emulate the reasoning process that
an experienced building operator uses in these tasks.

The qualitative models developed will serve a multiplicity of purposes
including support for diagnostics, building operations support,
operator training, intelligent explanation, enhanced information
presentation, and ultimately, machine aided learning.

This work will draw heavily upon the significant contributions in
qualitative reasoning by researchers like Hayes, Johan de Kleer, Ken
Forbus, Chuck Reiger and Milt Grinberg, and others. Our work shares
the common goal of attempting to formalize the commonsense knowledge
about the every day physical world. Specifically, within the context
of our application domain, our goal is to formalize that subset of .

commonsense physical knowledge dealing with typical engineered systems
used in controlling the building's environment.

What distinguishes our approach to qualitative simulation is that we -

seek to encode, explicitly, a broad base of pragmatic engineering
knowledge particular to the HVAC domain. Thus, we place less emphasis
on the microscopic details of the behavior of physical systems, and
instead, emphasize the macroscopic aspects of behavior. We have coined

the term Qualitative Engineering to distinquish our approach to
qualitative reasoning.

Oualitative Engineering borrows some of the epistemological ideas of
Reiger and Grinberg; the notion of states, enablements, tendencies, .
etc. Unlike the work of Reiger and Grinberg, though, our work does
depend on the integration of function and structure as an integral part
of the representation. Furthermore, we have extended the notion of'..
connectivity to include both physical as well as functional
connections. Thus one can talk about electrical connections, fluid
connections, thermodynamic connections, etc. .f .

I,, .-
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Another distinction between our approach to qualitative reasoning is
that we do not rely on the use of qualitative differential equations to
express behavior. Rather, it is our goal to develop a concise, but
powerful, representation of HVAC controls knowledge using a small set
of heuristics to describe qualitatively the physical behavior of
building HVAC equipnent and systens. In the Qualitative Engineering
representation, for example, the fact that closing the valve will stop %*
the flow is represented explicitly as a rule instead of a qualitative
differential equation.I The goal of this project is to develop and demonstrate a methodology
for constructing qualitative simulations of HVAC equipment and systems.
Our current activities address the representation of the physical.
components themselves (e.g., pumps, valves, pipes, heat exchangers);
the representation of collections of components into subsystems and
systems; the representation of the behaviors of these components in a
machine executable form (e.g., the purpose of a pump is to supply

14 pressure); the representation of the structural and functional
connections between components; and developing constraint propagation
mechanisms to "compute" the system's behavior based upon this
knowledge.

01* * d
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Management Analysis Company, Located in San Diego, is a _ '. ,

general consulting corporation dealing almost excLusively with

nuclear power generation.

During the spring of 1985, white investigating the causes ,

of inadvertant actuation of reactor trip signals at the Salem
. - .

Nuclear Plant, we developed RiTSE, the Reactor Trip Simulation

environment. RiTSE is a frame and rule based At system which

represents all components, processes, and their interactions and

current states. An event driven inference engine predicts if a

contemplated action, such as taking a pump out for servicing,

would cause a reator trip, or any other event or system state

that had been identified as 'interesting'. - ","-"

One of the principal causes of 'unplanned' outages and poor

emergency response is human error resulting from the subtle and

complex interactions of the many simultaneous activites of

maintenance, testing, and surveillance at the plant. These

activities often affect systems or components at a very deep

level. Indeed, maintenance and operations personnel can change -

the operating state of nearly every component in the plant. r-.-'
0..

Typically, operations and maintenance personnel are not

trained to analyze the potential interactions and ramifications p

.4. , ... ..
'-°.. 
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of their activities. Those responsible for authorizing such

activities are often quite knowledgeable and may understand the

plant to the extent of hundreds of sub-systems and components.

However, it is quite impossible for any individual to remain. ,

'III. aware of the tens of thousands of components, their potential

interactions, and the impact of the next activity on the system

• . as a whole.

The effect of subtle, or complex, interactions among

nuclear plant components has historically been difficult to

analyze. Indeed, in response to recent incidents at home and -. "

abroad, the U.S. NRC appears to be reemphasizing treatment of

system interactions, particularly with respect to the effect of

so-called non-saftey syatems on safety systems.

Therefore our engineers wanted a system that could (1)

allow the plant staff to predict if an action or set of actions

would cause a reactor trip, and (2) should a trip occur, aid in l

determination of the components and systems which directly

- •contributed to the trip.
C.. .'..°-

. Traditional solution methods, stemming from reliability

technology, require that one knows beforehand which components

interact and what the ramifications might be. However, the very

LP
problem is to discover those interactions, not to assume them.

Using RiTSE, we model each component individually, looking

,:.e -..-..:..--
-: . ..
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one step downstream, as it were. For example, the rule for a , -
V .-

motor operated valve might be: '

. %% .

MOVI is OPEN if -. -'
BREAKERI is CLOSED &

[: ~~480VACBUS is ENERGIZED # '

or .
BREAKER2 is CLOSED & L,.- .

480VACEMERGENCY is ENERGIZED

OTHERWISECOE"NG.Dprcseont

MOV1 is CLOSED | -

In this manner we consider all aspects of a component: its power

supplies, its control mechanisms, its associated

instrumentation, and both the effect of dynamic processes on the

component and the component's impact on processes.

We employed a frame structure representation for both plant "

entities and rules. We populated our model of the nuclear plant

with frame types such as mechanical component, electrical

component, controller, process, sensor, system, and functions

(which are rules which refer to no plant entity).

We have used a hybrid approach to rule representation. A

rule is much more than a simple 'if-then' pair. There are many

slots in a rule frame, only one of which has the 'rule'; other

slots include English of the rule, pointers to referants, names

of heuristics, actions to take, values to return, and conflict

resolution instructions.

-u4
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RiTSE essentially tinker-toys the plant together. As a ,

delighted user remarked, it is a boolean spreadsheet.

Our system was used at the Salem Nuclear Plant with great .

ease by the engineers involved, and produces accurate results.

We have spent the past year demonstrating our system and

delivering conference talks in the nuclear field all over the

world. Several requests for systems have resulted, including

the Atomic Energy Council of the Republic of China's request for

a system for the Maanshan Unit 1.

We have found that we have developed a generalized

framework within which to model nuclear power generataing

facilities. In the obvious hindsight of Chernobyl, the need for

an interactive tool to assist nuclear plant operators in

assesing the impact of proposed actions becomes clear. Our tool

is a first step in that direction.

We discovered some practical issues in the development of

A! systems: "twinference", when a rule for a component's state
-. %

must also be executed with an eye towards operability, and the

fortuitous use of databases for instantiation of frames..'. .

We are presently investigating the relationship between
-p.%

deep representations and shallow inference, and in turn shallow

representations and deep inference: the logon versus the

anaLogon (AoyoV Ko. 0,y).

.1*1.
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PROJECT OBJECTIVES

In a modern chemical process plant, the operators supervisory

control activities include the implementation of startnup, shut-,down

and change-over procedures, process monitoring and malfunction

diagnosis. The operator must understand the behavior of the

plant in order to accurately predict the consequences of control

actions and select the correct responses.

The supervisory control decisions made by process operators

are frequently based on training, but often they are based on

mental models of the plants behavior. These models are usually

developed by experience and are not rigorous and consequently

may be inaccurate and incomplete. Mental simulation of hypothetical

situations may involve long and complex chains of qualitative . ''

reasoning and can place significant cognitive load on the operator -

during time-constrained situations. This provides the motivation N"'.'

-I30

for developing computer simulation tools for assisting the operator

. .-p
.',.1
" ,.
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in making supervisory control decisions.

Traditional algorithmic computer programs based on detailed

mathematical models yield the most accurate results but require W

large amounts of process data and long computational times .

Furthermore, quantitative predictions can be undesirable as ,.1%.,

insightful concepts are qualitative in nature and the quantitative

predictions may be difficult to interpret. Human experts are

able to make accurate qualitative predictions of the consequences

UAD
of their control actions and equipment malfunction. Therefore,

the thrust of this research is toward qualitative modeling of

process behavior.

In the chemical engineering domain, the underlying phenomena

of momentum, heat and mass transfer, kinetics, process chemistry

and thermodynamics are well understood. A model-based system .

is required to capture this knowledge. The goal of our research

is to identify the principles that underlie qualitative process

behavior and to begin to understand and to create computer simu-'

lations of the process of qualitative process simulation. The

simulator developed could serve as the model-based "core " of

expert systems addressing various supervisory control tasks.

RESEARCH PROGRESS "

Our initial attempt to model the qualitative behavior of

processes has been to investigate qualitative malfunction simul-

ation. The effect of a fault on a continuous steady-state process

is to cause a deviation from its normal steady-state condition .

Dynamic effects have been ignored and the ultimate directional

~ '.- .J
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* •I : changes in the state of the process after fault or disturbance -'"",

* initiation are predicted by propagating the effects of the fault -

*through a qualitative model of the process. The application

* of these predictions is in diagnosis of faults, using a fault/symptom

* table, or a hypothesis/test diagnosis strategy. The paper describing A

these results is attached.

The view of qualitative process behavior advanced In our

work is that the effects of faults are causally propagated from

one variable to another while satisfying process constraints.

Therefore, methods and models used for fault simulation should

include both concepts of causality and constraint satisfaction.

Causality is represented in our method by the signed directed

graph (SDG) (Umeda et al. 1980). The SDG consists of a set ..

of nodes and signed arrows process, representing the immediate

cause and effect relationships among process variables. Process

constraints are introduced through qualitative equations (conflu- ,,

-, ences) (De Kleer and Brown, 1984). Confluences are logical const-

* raints representing multiple opposing tendencies among process

variables and not causality.

Qualitative simulation is a fundamentally underspecified

problem and potentially leads to multiple solutions. Some of , ..

the solutions obtained may be spurious and others may be genuine,

and valid for a system with a certain set of numerical parameters.

The basic challenge in all qualitative simulation methods is

to reduce the ambiguities generated by the removal of quantitative

information.

A novel feature of our work, the ambiguities are reduced

*. . -..



by the addition of "latent" constraints associated with mass,

energy and information feedback loops in the process. These

constraints are derived from redundant quantitative process

equations. While it cannot be proven that any technique will
.'.. %i.-.

eliminate all spurious solutions (Kuipers 1985), our technique -

has not produced any in all the examples we have tried. Our It

method does not require numerical parameter values and has been

tested on small scale realistic processes involving interacting

control loops, mass and energy feedback, and multiple conflicting -

causal pathways between proccess variables. In cases where

multiple sol utions were predicted, they were valid for certain

realizations of system parameters.

Our current method has some limitations. Dynamic information

is ignored and in processes that exhibit inverse response, direc-

tional changes in the values of some variables during the transient

may be opposite to that predicted at steady state. It also ignores

the possibility of entering regimes where physical behavior

undergoes fundamental change and the SDG and the confluences

no longer apply. Further work needs to be done to resolve these

complex issues.
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1.C" IN*TR,CDU:TICjN

For twc~nty Years Petri Nets have Provided an analysis and

modeli ng tool To!- thc theo-eti cal E£t~lkd,' ot systems. The Use of Fetri

Nets in i ndstrY hcw ,cS:r, ho-': been li mi ted bec,?USe they are dif1- 1CL( t

to imp lemEnt al itor ithad iical1y.

The r ich the or y assoc i ae wi. tt; Fe':r - NEtO i i eI d'L analI y _i a

technicmre= to dc- Errnr sa.l-eres bounedes- cosra~to, 1iee

r reac hab i 1 i t. an'-d c oera7L - 1. i ty. ThE-sT-e tec hn i 1 LE'- have reP- z ]. tLEd i v.

t h eoL)r E: i c: Fj. 1 s - 1 o i~ o~1 r- O i n t hev modelc- 1 i nr o -f h ard war - c-.n d s7,c) 1. Wc r c-

p rocE-:s i ne mar: hi ne-ho CP C'-ledl LA 1 n 19 mar a seent - chedl UI n' a nd eEE 3

c: h csr, c~m trars n O -fT,5~ i c~. r- E -st r i Ncts SEEM eSreC i cll ell WEI I c S d fOr

t-he mc'dc] :Irc 'r c cofl )ct ond (:onoLurrency - Real wjorlId olictors

h I-,v h u C F)lF. Eacrr :*- n £s. C -~' the ti eor et i c a

1- c T Jr CC: 3i j FD 3~ r- MP-l t S for bl.' i I d i fl 9 rtI e? b asced

£ . EzT.: r-C--. E] 1 C-,, E -kY ar 1. use of Fut i Ne: s: andc th;-:i r %ors' r

Ic E. -d d 1tj ora. t h C.on f.e*'t i c", ct ob e Lc ori'IeF-t t i o; oJ d e- t 11E:

c-, c: D r Fa N'4:-l mo , 2d E-

c t c. r Ert11- a i: i on a an at'j t-- err) t toc a r a c-S re cz a r d

ot) b eC: te S: ii t h so4 t V-a r E. oh bi c tos Re a wcr I cd o b i e c t: a rEv oh L-- i c: s o or-

C7ne-tl -i..Th tr ans] ati on of the c:orceotL8aJ LjPLtS U~sed b yF P:<r ts,

def i ne the(: dc'..e c ormert of an c- . rer t i E1~:- (ur M Etccmr :IaI .c u

sy stem ciroduolto rrova de frar T1.' t c. c:aottlire dato ot Ject T arFid

method::," 41 a%1Cr si to c. t urEF f OFIG t i onr- bLirtd to, dAt a The ob .i ect" s c--

p a C-.

wtag 'r



basic transitional logic, however, rIust be captured in rules. These v

rules can be represented by Petri Nets.

The objects of transitional logic consist of pairs of states: -

local pre-states, and local po-t-states. In fault dianosis7 for %

eImp e a o a ePat o l b e an observe d anoma l i in a m ach ine . ' _}

component. A local post-state would signal. the need for component - .

tests. The nodes of a Fetri Net corresponrd to local states. -

Transitions ].i n k the state.. def i ni n the 1 o i ca] c:ausal i t between

therm. In this manner:, the F:tr i Net r-rovi des a Vi sLIaI and theor et i cal

epresentation of the conceptual. states and state transitions in an

e, nert s Sol uti on to a proble,. ... .

r%

7 TANSLATION TO A RULE .-f, EE SYSE.M %F.

L. :rr-ts tEnd to break prohlenr. into components. The ntude is o- a

F et ri Net model thoe com ronent s. E Perts study probIem comPonents to -

d r- ne their logical relations;i s. Petri Nt.: transitions model .<-

thOSe relations.
% .. J

The implementation of Petri Mode] 1 t 1-1or it , I C SO. 7t are is k, 15 rfI

C. s icz t-.il -: L C:ar U E. , standard aI 'cr- thm -- tend to c L. E: tCr'&r i'..t -

states. They are often contri ed and hard tc undersland. Typical .

implementations relY hea,.i I or, tat-]f, repr- :r ' -t0' r:.-- which either

require much stora,7e or .imit the si -e ot tEi n et -. Iii either case..

the speed of si mul ati on decr eases rapi di wi t L tf, ci -. of the.

networ .

Obie;t orientati or, \erco (T i EL- oe d: ± I tei_ - b, form in.

direct correspondenc:e between nodr , _  tr anri i 1or 1 .. rI sCftware. rf-

software grows with the networl. HIrdire and s;+t ware tav. ored to

P a C'

S.%



object orientation and symbolic processing (such as the Flavor System)

allow efficient simulation by localizing object Processes. For

example, statistics may be kept locally (by the software objects which V

represent a node or a transition) eliminating the interface between

local objects and calculation modules.

In algorithmic implementations. graphic representations of '.

Petri Nets are separated from the net definition and so require an-

interface. Object oriented renresr.entationE on Mn.-bolic ercr:.

i nclu de graphical reeresentati ons with the net def i1ni ti ons, all ow.n n--.

sc, histicatcd MMI in which the user sLees the actual ji,.;llernental:ior,.

Ru]es are an object oriented rewrese-ntation of an e.pert's

I ori c:al anal ysis oT" a rroblem. The left hand side (hypothesis-) of a .0'.

rl e reorec-r. nt --, the 1 ccaI s tae of the prole ,E( bef ore the rLk e f i res.

re i h-ht hard .i de of a r le (the c:onc l A .or-1) re r ese ts the 1 oru & I ' .

state aft-r the rl] e fires. The rule i tsef ca tUre-, the 109 cal

re atior c the 1loc:al s.tatc-. In this; man-ner-, r L,)e bas-.ed s. stemE-; r-e "..- "

!.ofater UFEd to Model an elP-,rt -Cal Ut Im tO 5 rob 1, e i the sa

manner f-,'Etr i Net M- .del .. A rL I C baed r-terPr et7t i or, c:,! r.-tr i N-ts ".

iE r,, tu-al : nodes correspond to the left and rj .ht hand i de-: c:f rLti e .

wh i 1 e t ran si tons c orr-S7 Por d tc. the rLAe _. t heme ;], I es. Lc 1 n c, r, - t:, .e d

systems to i mpl ement F etri Net mod-s appe i a) I the power o .-.

S7Ymbol ic proces-i ni developments to FPetri NEt sirnul ation, while

maintainirci thE logical caisa)]i]ty of real world sClutIons. Fetri Nets

provide a vi',IS. l lirn[ between the e:nr)ert anal_ 'si and software rle,

implementation, allowi.nc both the develocer and e pcert to build a ..

system incrementally and view or Simulate that system a. it s-.

devye] oned. ,'.' S..'

d a e e d .
-
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The Dining Fhilsophers Problemn (sl-~ested by Dijk:-stra in 196c8)-

evemplifies, the relation between a Petri Net representation and a r Lk e

based sy'stem. Five Pholosophers are seated in a circle with a si ngle*

I chopstick. between each one. The Phi1Loso--;herE alterna~tely think and

ezat. InordF:r-t eat, however7 z-philosopher must use w chopsticks!

he mis -t takeF one from each of his nei c4hbors.

T h f Fe .:r- i N Et r e;-r e s e n -,t i or n - th1-,j s P r ci er; is:' showrn in

L : E- onF. Di f t-er-ent stat es and so] ut i on - to the Pr Dth] emr c an be

r, f b"'r a n to[ens in di f *Err-c ent nolit ions.

'The rule based represpi-stati on can be defined cirectI v from the

F~r:m &:in whi ch active rL'e corrt-sp:ond to active transitions. This

- w L i C Loi consi e:ta of f~i; P, eajrs of rules= (one for each

F£E.C: h Pair o-f rules? coln;i ste o-F a. Ph iiosopher-eat rul

* an c- cr r-hn1 ruLke:. The leftI hand side of the

* '; ]5.oa rul e rE-quL~ res- three f acts.-: the Phi 1 os.orher i s

'ii , r ltI e h i I o ol:sher h as a c ho r st i c k on h is l ef+t an d t he . -

r I CD, o~- has a c hcju t c: h hi E r i ght. The r- i ght hand Si de reeld te.

*r, threci actiors:. the removal oi both choPsrtICl s- the Phi lopher

I E n- fi -S t In ais-mi1 ar mar-ncrt the sec ondc ruliie c hancies. an e F, i r- 9

P hi 1 1.C-:T,;:Dher' t t a th in~ i nc one (f iur 911E:- WO)

Juta-. the ni asinc? uf toke-ns, car, Simulacte various si tua ior .;

in t h: F ret r- 3, -: mccdp] thcn aE -- ert or-, of f acts Ill a rUl e based model

c at r r TL£ i , atItE-:r-nai y Ve.-

I "n 3 Tnrortant tratUre of (etAended) Petri Net models is the

rr c mdEol at var- i OLISI level E oi abstrac t i on. Arny sect: if 0n oi r

P a C,4 C-
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DINING PHILOSOPHER RULES

(RULE Philosopher-i-Eat
?-fl <- (Philo ;opher-l--SLate Thinkinq)
?f+2 -(Chopstick-i Available)
?f3 <- (Chopstick-2 Available) ,

(Retract ?+I) -

(Retract +f2
(Retract ?f)
(Assert (P'h ilo s oph er- I- -St ate Eating))

Ea-iti r.q Rulez -for Philosopher-i

(RULE Fhilosopher-i-Think
"-fI '-(Ph ilosophe~r- I-State Eat i nq

(Retract 7+f1)-
(Assert (Philosophor-I-State Thinkinq))
(Assert (Chopstick.-i Available))
((E;ert (Chopsticlk-2 Available)))

iThinking RL111? for Phi] osopher-l M

FiqUre two

m



Petri Net between two nodes may be modeld by a sinsle transition with
"O

an al ~orithmic delay. This allows we]] understood parts of a Prob]em

to be modeled QuicVly and inobtrusivelY.

A correspondin3 second level of abstraction in a rule based

siystem uSes frames instead of specific facts. In the Dining

Fhilosopher problem, for exanles, the five sets of rules: are res] aced

t by one set. The 1Ef t side o4 the Philosopch--eat rule i. replaced by e'

raE~6hc,=r-s, slots correspond to the ehi oso',her' name: his state

(thi k : ins or eatiV- E 1 hi 1 ef t chop-t;is (whether or- not it i s i r,

Lk e , his r i h t chonst i c1., hi left n-i jhbor, and his right nei Ihbor

i gt--c: tirire:- . -rt : r- i -ht si de chan g s nvt only the values in tht-.

c!.;rrant Ph c v ':oher.H s frame-, but tIiose of hi s nei 1hbors he ta:e:

thei r- chor- It i. c: ls The cc-ress ci~nch ri- FEtr i Net ic s7 how i i 4 1 'U-E' fs'r .

Just as a cmore ab-tract Fetri Net mOust a]) orithmical i model both tI-e

e n etworl rd to- e e, abt-.tra eted, a more abstract rule se- must mock i thC. d

-acts . - i n a spec:ic frame) and the Tact rel ations (S ots ji

C, 3 L! IC

Th, a.t ra] correcc: ndence betwjeen Fetri Net- and rule based - .

c stem_.n iE,:-?Et s.that Fetri Nets may be used as anal y si and

Mar'k9EME',t toc] for ru] e based sy stems.

Thr 1 c::i c- oi rule based s. stems is Ef aten hard to fol ow be ."-

they are not ] 9 r I t ]fhTi Cr sesuent u a] . The 9r aphi ca rePresent t io .

of a F'etri No-,t aides the understandin, , of the logical relation of a -

correspondi. n ru] e based system. The re resentat ion maY be a t V4ioUS

levels of abstract1on.

a-i .- o, -
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DINING PHILOSOPHER RULES

(RULE FhilosoE)her-eat

(SCHEMA '?Phi losopher-Nane

(STATE Thirikina)

(LEF T-CHOF'ST I Ci: A~vail]able)

(R IGHT-CHOF'S1 I CI. iAvai 1 ab 1 e)

(LEFT-NE IGHPOFR "'hi I ossonher-Lef t) .

(Flk'lGHT-NE I GIAOR ?:Fhi Iosopher-Ri oht))

(IIOIF '( £CHEMAIh~Iocpe Nn

(SIA TEI Eatinct)

( LEF-r--CH0FS11CL1 FDUV)

(Rl GI- CI iC3FT 1 ICf.. 13L.ISV O

(MODIFY (SCHEMA '7'Ph1ilosopher-Le-ft

4 (RIGHI -CHC)FSTICF. FLIFy)

(MODIFY (SCHIEMA) ?'hi Iosopher-Ri Qht

(LEF I CHUF'S1I Cf::yBusy)

F i r L ErE tr c. e %
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Rule based systems may be tested and analyzed by Placing

tokens at the different Petri Net nodes. This corresponds to asserting r. - -*

certain facts in the rule based system.

Complex analysis of the rule based system is achieved by the

extensive theory which surrounds Petri Nets, allowing one to

determine, for examr-le, if a set of markings is reachable and if the

correspordine state oss.ihle. -

The graphical representation of a rule based system may also

Ihelp to dEc:ide what to abs.'.trac:t and modularize. Winen Fetri Net .

ircomponents are abstractable to singfle nodes or to sing]e transitionsm

the rulesn- might be abstracted in a corresponding manner.

A Petri- Net modelinq capability has recently been implementeJ "

b the autho, r- U-i nL the Flavor System on the Symbolics computer. Petri

Net mode]ls are being.; used to aid -the development of a rule based - %

prototype which manages and displaxs information in a Command,

Ccntro] , and Communications system. Lessons from this Prototy )e

deve'o ment will be presented at the symposium.

, - .
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MODEL IDENTIFICATION USING HEURISTIC SEARCH

S. Hanagud and B. Glass
School of Aerospace Engineering 7
Georgia Institute of Technology

Atlanta, Georgia , --

N.-
1. Introduction ,

Control of distributed-parameter systems requires requires an accurate analytical model of the
physical system. When the boundary conditions of the physical system vary unpredictably in time, as *.

may be caused by growth, reconfiguration or damage, the problem of control of such a system becomes .

complex. Since control laws are based upon simulations of a system's behavior, and these simulations
are obtained in turn from system models, the control of time varying distributed-parameter systems
(such as robot manipulators or large space platforms) requires the repeated characterization of model
structure to reflect the changes of the physical system. Within the domain of structural dynamics '.-"

system identification, this paper discusses an approach to the model characterization problem, using
heuristic search in a space of discrete system simulations configured as an inheritance lattice. An . --
example from the domain of structural dynamics is used to illustrate the approach.

2. Problem Setting

Current system identification methods alone are inadequate for identifying time-varying models, as
they start with a single static model structure. For example, suppose a parameter identifying program
for an originally cantilever beam was given current dynamic response data corresponding to a new
model, such as a clamped beam with a non-structural mass. The additional, unmodelled mass would
effectively decrease the stiffness of the beam, which the parameter identifying program could '-" -
accomodate only by removing stiffness from the elements of its cantilever model. It is apparent that -
parameter identification methods alone are not well suited to the model structure characterization -" -
problem. In order to obtain a model that matches a given physical system state, the characteristics of 4

. the structures of possible models must be known so that they may be compared with the evidence of
*- the given state.

The structural dynamics theory embodied in each model was that of simple beams without ",
significant shear or rotary inertia effects. The method of superposition of flexibility influence
coefficients (Dunkerley's equation) was used to relate frequency shift to addition or movement of
lumped point masses on a continuous beam. Node shifts were found by comparing the observed mode "
shape to the analytical mode of the same order associated with the selected model, and were used to
estimate locations of lumped masses. Boundary conditions that varied bewteen each model resulted in
a characteristic dynamic response (e.g., natural frequencies and mode shapes) for each model.

Characterizing the model structure will result in matching the ith model out of n possible models. To '" "
completely identify the model, the ith set of parameters must then be quantitatively identified by a
parameter identification technique. This fully-identified model can be used for control and other ,: .
applications, and is saved for monitoring and future identification reference. ,.•

3. Identification Procedure

The distinguishing characteristics of models that make identificatirn possible, however, also - 1 -
foreclose the possibility of a unified analytical approach. In structural dynamics, for example, the
model structure--the characterstic equations from which vibration frequencies and mode shapes may
be calculated--varies by model. These variations take the form of changes in groups of boundary
conditions and parameters (syndromes). Changes to an underlying conceptual model such as a beam "
suggests the representation of the possible models as objects in an inheritance lattice, allowing only
the syndromes to be included at each node rather than repeating the entire model structure.

These distinct models are used to simulate the output of the physical systems they represent, so
error criteria can be formulated and used in the search heuristics. Search is conducted in the space of . .

. . .. .... .- . . .. .
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the simulations generated from each model. Two levels of abstraction are considered; first, prototype ,
models representing general configurations, then more detailed models including the syndromes. The %' ','

root node is the previous model. In structural mechanics, the first level examples could be various %
beam configurations (e.g., cantilever, simply-supported, clamped-supported, etc.), while the more
detailed level could include the effects of added masses, stiffnesses, or cracks. -, ., -

In an inheritance lattice, the detailed or "child" models can inherit structure and parameter values ,. -
from the prototype "parent" models, with localized changes made at each node to distinguish it from its .
parent model(s). An assumption is made here that the syndromes are independent, that not more than
one defined group of boundary conditions and parameters are affected by any one change to the e.

physical system.

A tree of models in the domain of structural dynamics was constructed as a lattice of LOOPS
(Bobrow 19811 objects, using simple beam models with syndromes of added masses at various
locations. The search method used was best-first, with a weighted combination of squared frequency
error and Allemang and Brown's modal correlation coefficient included in the model evaluation "
heuristic. A queue was formed, consisting initially of just the root node of the search tree (the . .
simulation based on the previous model). If this first model in the queue satisfies the heuristic error .0
constraints, the current model is retained. Otherwise, the children of this model are substituted for it, "..,. -.

the queue is sorted by the least estimated error, and the process repeats recursively until a match is
found or the bottom of the search tree is reached. Methods within each object, triggered by active
values, correspond to discrete simulations. When triggered in the search process, these small attached
programs calculated estimates of mass values and locations (given the current output from the
physical system), as well as the vibration frequencies and mode shapes used by the searcher.

The identified model, including the initial parameter estimates of mass value and location, was
given as input to a recursive parameter identification program, MCKID [Hanagud 1984] to
quantitatively identify the model parameters. Parameter identification, following model structure
characterization, completes the system identification process for time varying distributed-parameter
systems.

4. Results and Conclusions

This model structure characterization approach was verified in the structural dynamics system
identification domain by tests run with structural dynamics data input that reflected changes over .' '
time to a beam. Mode shapes and frequencies were obtained from analysis and corrupted with noise to "
simulate measurements (like those produced by a feature extractor, such as Spriet and
Vansteenkiste's [Spriet 1984]) of a physical system's dynamic response.

It was found that even in the presence of significant noise, the search returned with the best-fitting
model, in the relatively small search space considered. The existence of incomplete or missing data
generally reduced the accuracy of initial parameter estimates, but did not affect the
search--demonstrating robustness. Integration of this model structure characterization procedure
with a parameter identification program resulted in the quantitative identification of model
parameters.

Issues still unanswered include the optimization of the search heuristics for use in large model
spaces and the presence of multiple syndromes simultaneously in the physical system. The addition of .- -_-

limited inductive problem-solving ability, and storage of previously-identified cases, would help
relieve the latter problem. -"
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Using AI-Based Simulation to Model Manufacturing Facilities

Perry A. Zalevsky
ALCOA Laboratories
Alcoa Center, PA 15069

Computer simulation has been used to study the dynamic behavior of manufacturing
facilities. In some applications it has been used as a design tool to examine
proposed plant configurations. Issues relating to the placement and
characteristics of machines and the processing paths for items are often of
concern. Simulation has also been used to analyze possible changes in existing
facilities. In these instances, the emphasis is on modeling an already existing
system and varying parameters to determine their effect on that system. In this
abstract I will briefly discuss applications in the two areas mentioned above
and how AI is being combined with simulation to provide a more powerful

analytical tool.

The design of new manufacturing facilities is a complex process that can be .'.'
aided by the use of simulation. The number of machines, where to locate them,
and the characteristics of each machine, are often items of interest. In a
simulation, by varying each parameter, a large number of possible configurations
can be evaluated. Other questions arise concerning items that move through the
system such as the proper processing path, the amount of work-in-process
inventory needed, and the means of transferring items between machines. Here
again, the number of scenarios can be large. Also the processing costs
associated with each of these alternatives may be important. Traditional
simulation packages such as GPSS [1] and SLAM [2] have been and could still be '-:
used for this application. Since they were developed to be general-purpose
simulation tools, they can model many different situations, including this one. .
But their generality makes them time-consuming and cumbersome to use. There

1P also is no systematic way to reduce the number of scenarios generated by using
the knowledge that is contained in each entity in the system. :-!
An alternative approach is to use a frame-based AI knowledge representation

. scheme. In this way a library of entities can be created and instantiated, and
can include both attribute and behavioral descriptions of each machine or item

C in the system. The knowledge base can consist of facts about each entity and
its relationship to other entities, and process knowledge about the effect of
actions in the system. For example, the class of mills with certain properties
can be defined. Rolling mills can then be a subclass of mills, with the same
properties as mills and any additional ones that are specific to rolling mills.
A particular mill with values for each property can then be created. Each
instance would then have all of the knowledge about itself and its relationship I q
to all other entities in the system. It would then be easy to restrict the
number of scenarios generated, for example, by cost, because the system-wide
costs of any processing path would be easy to calculate. In this way the
simulation could help choose the better alternatives.

We are using this approach to model manufacturing plants that ALCOA is
considering building. At this time we are developing prototypes for two plants.
The models are being developed on a Symbolics LISP machine using the SimKit
knowledge-based simulation package.

i 
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The second kind of application that we are working on is the modeling of an
existing facility. With the combination of Al and simulation, however, we are
able to do new kinds of analyses. A number of our manufacturing plants are job
shops where items move through the system while being processed at a large
number of machines. Different kinds of items need different processing.
Various machines are grouped together into work-areas where one person has the
responsibility to schedule the processing of all of the items that come into

that work-area. Over a number of years this person becomes an expert at
scheduling this work-area. Each scheduler may have responsibility for 15 to 35
machines in a work-area. An item flowing through this work-area may need one or
more processing steps, and can return after going to another work-area. The
scheduler decides the path that the items will take, keeping in mind machineKconstraints, quality considerations, and most of all, due-dates. The scheduler
may try to balance the flow of material over the machines, or route items around
a machine if it is backed up. This expertise has been acquired over a long
period of time and typically consists of many informal rules or heuristics. -
The scheduling of items to be processed in a work-area is an expert system
application. The expert could be interviewed, the heuristics determined, and
possibly a rule-based system could be created to schedule like the expert does.
But the combination of an expert system and a simulation would be much more
powerful. Schedules generated by the expert system could be simulated and then

checked by the expert. Once the system was validated then proposed
modifications to machinery and processing paths, and more importantly, -; 1
processing of new items never before attempted, could be off-line scheduled to

J'. see their impact on this work-area. This could all be done without affecting
the actual manufacturing facility. 4

Another important use of such a system is for training. Expert schedulers
acquire their expertise over many years. Quite often as they near the expert
level, they also near retirement age. An expert scheduling system with a
simulation would be an excellent tool to train new schedulers. As it is now, if
an expert scheduler goes on vacation, performance of that work-area decreases
noticeably in his absence. And in one particular case that we are working on,
the expert scheduler is retiring in one and a half years. In the past, a novice .

who has spent a week or two with the expert would then take over this scheduling
task. And the process of acquiring expertise would start all over again.

This work is also being done on the Symbolics LISP machine. It makes use of the
SimKit package for the simulation and the K(EE expert system tool for the
scheduling system. Both of these packages use the same frame-based knowledge
representation scheme and should be easy to put together.

-2-
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The subject of our research is the problem-solving tasks of an engineer performing ::s"

verification and tuning of mathematical models of real-time systems. Our goal is to pro-.- _"-

dce an expert system which can identify and reason about discrepancies between a simu-

lation and real-world data. The expert system must perform experiments with the model,".'-.-
trying to reproduce, within given tolerances, responses recorded during tests of the "...-

._ modeled system. Discrepancies in the results of an experiment lead to hypotheses about ..,.

~ ~~possible deficiencies in the model and corrections to the deficiencies.,"" .-••

A We are applying AI paradigms to improve simulation, not by running an expert sys-

mp ~tern as part of the simulation but by constructing a tool which can be used to improve...-'-
• .'_- real-time models.""""... ..

The domain we have chosen is the aerodynamic models used in modern aircraft flight .,'

Vtraining simulators. The model is implemented as a program which is run at an iteration..-.-
rate of, typically, 30 Hz. and is a critical component of man-in-the-loop simulation. The '""

checkout data consists of time-histories; aircraft parameters, inputs and outputs, are plot- ,.,o.

ted vs. time. Comparison of time-histories permits verification of transient and dynamic"""', ..

characteristics of the model. Interpreting time-histories is itself an interesting knowledge- :,.,:'

based problem with parallels to speech understanding systems [1], [2]. "- ,

-" ~~The models in this domain are very complex and many details vary between different ,e,

.-...

"" aircraft types. An experienced engineer has a mental model including terms common to

all aircraft, equations of motion, effects of flight controls and expected response in stan- ."'"

dard manoeuvres. The gineer applies these general principles to understand a particular--..-.

discrepancy in a particular manoeuvre. The reasoning tends to be qualitative [3] and con-... ,

cludes with a proposed modification to the experiment or model. Finally the modification .. ,.-
is implemented and the experiment repeated to see the effect on the discrepancy. Our

expert system must perform the same basic cycle: li stm Or asop-

- run experiment .-. .

- interpret results-""'.e -

- analyze discrepancies btwe.aiu

- modify model/experiment -.. '.
This is essentially a search through a space of possible models and experiments, but the

nature of the problem forces us to use advanced AI techniques. d ui ts h

Since rules for modifying the model or experiment cannot be exhaustive it is essential

for the system to learn how to make better modifications by examining the difference

between predicted and actual effects as experiments are repeated. This form of learning

u.nby trial and error takes place among human experts also.
The expert system begins its task with a set of manoeuvres for the model to repro- l

tadice. A plan must be formulated to control the sequence of experiments. If the model is

changed to correct a particular discrepancy other manoeuvres may be affected, this con-"""'"
strains the allowable modifications. The control problem of revising plans to repeat earlier

manoeuvres requires planning with constraints 6]. Other activities take place in addition

to planning and the basic cycle mentioned above. For example it is necessary to look for

sets of minor discrepancies which together provide evidence suggesting an unacceptable-

• -"deficiency in the model [4. With many cooperating processes the appropriate paradigm is " ""
the blackboard architecture for control a5x.n"""depsisa

Advanced frame-based reprelies thes genes are used. The blackboard is

t, "" divided into control and domain knowledge bases. The domain KB is further divided,

containing knowledge about the aero model and results of all experiments. These KB's modification

I- N 1-.
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are accessed by multiple processes, messages are sent between frames and multiple con-
texts are needed to represent the results of different model modifications.

All the elements described so far appear in the sub-problem of curve interpretation
and most of our work has concentrated on this area. The goal of curve interpretation is V

tfind discrepancies between aircraft and simulator time-histories. A time-history is a
seunc f aue ra parameter, equally spaced in time. For each curve a separate pro-

cess is cetdeahprocess calculates a polynomial approximation to istime-history.
The order of activation is knowledge-based. The required accuracy of the approximation '

is expressed as a constraint which the process must satisfy. Advantages of using polyno-
mials include filtering noisy data, easy comparison of curves and easy calculation of

* derivatives.

The constraints on accuracy of approximations depend on the parameter, manoeuvre
and reasoning in progress. If an approximation is not sufficiently accurate the process can
add new breakpoints or higher degree terms. If an approximation barely satisfies its con--
straint it may be necessary to tighten the constraint so other approximations which

depend on the first will be accurate enough.

Our first aero model has three degrees of freedom. In this case only three approxi-.
mations - airspeed, altitude and pitch angle - need be computed numerically, the rest can
be obtained using the equations of motion and polynomial arithmetic. Aircraft curves are,
in general, only approximated once. Knowledge about the polynomials for aircraft curves .

is applied to help determine polynomials for simulator curves. :
Each manoeuvre is a sequence of phases, in each phase different aerodynamic effects

predominate. Phases are determined by significant movements of flight controls, 0., W'.*
* entering/leaving ground effects, stall etc. A knowledge source provides generic descrip-

tions of the phases of all manoeuvres, including expected shape of input and output
* ~curves. Interpretation processes use knowledge about phases to pick breakpoints and fit a. .,

seperate polynomial in each segment.

beOnce accurate approximations for simulator and aircraft curves are known these can
becompared and discrepancies found. The presence of a discrepancy triggers further

curve interpretation which depends on the discrepancy and the qualitative relations used

during reasoning. Acceptability of discrepancies is also con text- dependent. For example
an error of ten feet in altitude is acceptable in a climb test but not in a landing. One

response to an input is correct but occurs too early or too late. The system must try
shifting, by time at , the simulator curve to best match the aircraft curve and then reason

I? about At. -

In conclusion, we have investigated a complex problem of the interaction between
simulation and expert systems. We have applied emerging techniques such as knowledge-
based scheduling, cooperative problem solving and qualitative reasoning to a real world b%!'~~

problem. Experience in knowledge-based interpretation of signals in speech understanding '

research has been profitably applied to the interpretation and comparison of parameter
histories.
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KNOWLEDGE-BASED SIMULATION

Jeff Rothenberg

The Rand Corporation -IV

1700 Mai Street
Santa Monica, CA 90406

213/393-0411

(Abstract for AAAI Workshop on AI and Simulation 8/11/86)

The Knowledge-based Simulation project at Rand combines simulation and
reasoning in an attempt to solve severe deficiencies in large-scale military
simulations. It combines object-oriented simulation with expert systems
techniques, emphasizing hybrid representation, simulation at multiple
levels of abstraction, and graphic explanation and exploration.

4d

Background

The seminal work of Newell, Shaw and Simon at Rand in the 1950s dominated
much of AI's early research and defined many of its continuing focal points.
In the last decade Rand research on expert systems has produced the RITA and ,°- .

ROSIE languages, as well as several expert system applications. Simulation
research at Rand produced the SIMSCRIPT language as well as theoretical and

experimental research in game theory, monte carlo simulation, and military
wargaming.

More recently our simulation research has synthesized ideas and techniques
from artificial intelligence, expert system technology, graphics, and
distributed computing. Key results include the object-oriented simulation 4 .

language ROSS that makes simulations easier to build and maintain, the Time
Warp technique that reduces the execution time of object-oriented
simulations by using a network of processors, and two prototype simulations
in ROSS: the SWIRL air battle simulation and the TWIRL land battle
simulation.

SWIRL and TWIRL (like most simulations) do not include a model of the
domain. They relate situations to actions with no description of why the
actions are necessary, no representation of objects' motivations or

intentions, no specification of what should happen if actions are taken
without all of their conditions being satisfied, and no depiction of the
reasoning process that chooses actions. Simulation languages rarely provide
mechanisms for encoding and using such knowledge: they force the reduction
of goals and beliefs to opaque situation-action rules.

This severely restricts simulations to answering "what if" questions, where
the simulation determines future states given an initial situation. Without

an inferencing capability, simulations cannot specify what objects should do

to accomplish some specified goal, which future states cannot possibly
exist, what alternative actions might improve an outcome, etc. Such
questions can only be answered by systems embodying descriptive models of

the domain such as those found in Knowledge-based (expert) systems. . ..

Extended Modeling Paradigm (Hybrid Simulation)

We are augmenting the object-oriented ROSS language in several ways. Objects

will retain most of their current ROSS characteristics, including multiple
hierarchies for the inheritance of attributes and behaviors. In previous

Al.:
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ROSS simulations generic ("class") objects do not themselves respond to
messages; all messages are received and responded to by instance objects.
We are experimenting with allowing simulations to vary their levels of
abstraction and aggregation by associating behaviors and attributes with
generic objects which simulate the behavior of their instances and maintain
attributes representing aggregations of the attributes of their instances.

We are exploring alternative rule paradigms to represent objects' behaviors,
intentions and reasoning processes as well as the behavior of the simulation
itself (e.g., selecting appropriate levels of abstraction and aggregation

% based on the user's stated needs). Our goal is to satisfy the dual criteria
of making simulation code easier to understand and amenable to automatic
inferencing. -.

In integrating these ideas, we intend to use rules and constraints to
separate those aspects of a simulation that are really descriptions of the
simulated world from the objects of interest in that world. Much of the

* . physical, logical and temporal information in a simulation embodies the fact
that the real-world environment behaves according to certain laws. As such,
its relevance to the model is only that it must provide a valid simulated
world in which the model can run. The appearance of such information in a .O. -

simulation is a distraction that makes it harder to see that part of the
model that is of interest.

Similarly, aspects of a simulation such as automatic unplanning, control of
inferencing, or control of level of aggregation, and "artifactual" aspects
such as those controlling graphic presentation and interaction are also
irrelevant 4 o the model itself. In all such cases we are experimenting with
declarative :orms to separate such knowledge from the model of interest. %

Intelligent Explanation

Explanation requires that a simulation keep track of what it has done and be 4
able to analyze its own execution history and behavior specifications,
presenting this analysis to the user in understandable form. The system
must maintain an execution history of events that have occurred, rules that
have been invoked, messages that have been sent, prior values of attributes
and states of databases, magnitudes of changes, etc. We are experimenting
with various representations of simulation history for producing "execution
trace" style explanation.

The primary task of explanation is to convince the user that a model is
• %, behaving reasonably, and to show how it arrived at a particular result, as

requested by the user's stopping the simulation interactively and indicating
(graphically or by means of a query) the result that is to be explained.
The user must also be able to back up to a previous point in the simulation,

"-*- since a key result may not be recognized until after its occurrence. .

We are developing a graphics facility for performing such interactions,
emphasizing the ability to animate selected portions of a simulation. We
plan to give control to the system (via rules) and/or the user (via direct ..

interaction) over the level of graphic abstraction presented, so as to
minimize visual clutter and display aggregated results.

Intelligent Exploration

Exploration allows a user to selectively modify a simulation, pursue . ,

excursions, focus attention on selected aspects of the model, perform
sensitivity analysis or ask how particular results might be achieved. .0 . e

The graphic interaction described above allows the user to select objects -- -

graphically and edit their attributes or behaviors explicitly. This

........ .. P.,.
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provides a natural way to specify a scenario and set up initial conditions
for a simulation run. We also plan to experiment with using graphical input
to specify procedural information, for example allowing the user to draw a
route for a moving object on the screen. The system would capture (and
generalize) the relevant information, representing it as a new behavior for
the object. This "graphic behavior modification" should allow
non-programmers to specify simulation scenarios more easily.

Similar techniques will allow interrupting a simulation and trying
* alternative excursions, selectively modifying attributes and behaviors. We .

are experimenting with alternative approaches to relaxing constraints during : .

such explorations, under user control. Vw

Another major concern is to allow analysts to perform sensitivity analysis
on a model to identify important factors. We are examining both static and
dynamic approaches to this problem. Static approaches include applying
inferencing to rules and logical constraint declarations, or applying
analytic methods to closed-form mathematical constraints. Dynamic
approaches include automatically generating and running excursions to
perturb selected variables. In both static and dynamic cases we are 4
experimenting with a hierarchical representation of sensitivity to
facilitate complicated analyses..

Finally, we are examining the utility of goal-driven simulation, where the

user specifies a hypothetical result and the .ystem tries to find a way to
achieve it by a combination of static analysis of constraints (to eliminate
certain results as impossible), forward chaining from a given set of
conditions, and backward chaining from desired goals or hypotheses.

A*
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Palladian Software: Wrapping A[ techniques around simulation May 29, 1986
- and other Operations Research tools to "-' %

help manufacturing managers.

Palladian Software's mission is to create software products which make the

quantitative and qualitative techniques of management science accessible and useful

to ordinary managers. The expertise engineered into our systems by our Technical Nor%

and Product Management teams is extracted both from professors at MIT's Sloan %. %

School of Management and from managers at the Fortune 500 companies which are

participants in our innovative "Development Partner" program.

Palladian's first announced product, the Financial AdvisorTM, is an expert system for

doing sophisticated financial analysis of business decisions. It was commercially

released in April. A second product, which is still under development, is an expert K.
system for evaluating different manufacturing policies and is called the Operations

Advisor TM . This abstract describes the Palladian Operations Advisor1's ("POA") . ,..

functionality for the first and future releases. -

Manufacturing software traditionally attempts to track all of the complexities of the

factory. However, this forces the manager to focus primarily on the details. The 4

purpose of the POA is to help high level manufacturing managers make proactive,

- rather than reactive, manufacturing policy and capacity planning decisions. The POA %

"understands" the factory not in terms of the details of a snapshot of the operation, but N,?

in terms of flows through the factory. By using the POA's "understanding" of the

"physics of manufacturing" as manifested through such techniques as simulation, the

POA can predict these flows from a simplified description of the factory. The POA thus

encourages the manager to step back, look at, and manage the factory through the

allocation of capacity and the setting of policies. z....

In advising on this domain, the POA uses a model developed by a team lead by

Gabriel Bitran, the head of the Operations Management Department at MIT's Sloan

School of Management. The model incorporates several core concepts: queuing *"

networks, incremental costs, heuristics for determining tradeoffs among various "
important measures, and the recognition of patterns of information useful in making .41

manufacturing policy decisions. The POA also "knows" a set of methods developed by
Richard Berenson C593 .

Pallaldian Software Inc.
Four Cambridge Center
11th Floor ...

Cambridge, MA Sa142
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and other Operations Research tools to
help manufacturing managers.

the team for using the model to analyze the factory.

Initially, the POA will only advise on a restricted domain of factories: discrete, JP
fabrication processes. Assembly operations which share the same aphysics" as
fabrication operations (e.g. circuit board assembly) will also be covered. Assembly

which involves the joining of major sub-assemblies or frequent stockouts of required
parts will not be covered. Continuous processes which cannot be viewed as a single

step in a discrete process or for which the continuous nature of the step is important in

understanding the process will also not be covered.

These POA restrictions reflect our development philosophy: the basic capabilities 1
provided by the system will create significant value so that it is not necessary to provide
nearly the complete functionality of the system all at once. Rather, with each release,

the system will grow in terms of the domain it covers, the techniques it incorporates,

and the ability it has to help the user to use those techniques.

Technical Overview .. 4N.

The technology at the heart of the POA is "model-based reasoning." Within the

model of the factory are sets of objects representing work centers, product families, ~ -..

operations, and so on. Each object has a frame of slots; the slots within and between ..

frames are tied together by a network of constraints and relationships. The :

relationships among the objects themselves are represented both in the structure of
the database and in other objects through such things as collections and sequences. :

Information in the slots can be user entered through "windows" into the objects, can
be inherited through context-dependent defaults, or can be computed by "demon

goals" such as constraints (see e.g. Steele, 1980) or single directional functions. .

The POA uses two related models from Operations Research to estimate the

average lead time and work in process inventory levels in a factory given described
policies and capacity levels. The first, analytical queuing theory, can be viewed as a

d ~.2- '
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heuristic approximation to the second, monte carlo simulation. The queueing

approximations run several orders of magnitude faster than the simulation and are

highly accurate for virtually all queueing networks. Simulation, however, is more

t%-1 flexible and can be made to model details in the operation of the factory which cannot

be represented in the queuing approximations. .

Our approach to using these Operations Research techniques, such as simulation,
t'. -.

is to build a buffer of translation between the user and the technical details of the

technique. The buffer has several components. The first is extensive use of interactive

graphics. For example, the user describes the factory by graphically placing work

centers and graphically routing product families among them. The second is aid in

- formulating how the techniques should be used. For example, the user might be

.5.. asked, based on an automatic analysis of the number of hours of capacity at each work

- - center, whether work centers have significantly different schedules. If they do, the user

might be asked to describe the schedules for work centers where they are not already

described. The simulation would then know to model, rather than ignore, those 6

schedule differences.

The third element of our approach to techniques like simulation is the interpretation

of results. For example, if the user has indicated a concern about jobs occasionaly

being very late, the system would automatically track, compile, and interpret statistics

on the distribution of lead times. The interpretation wuuld be not in technical jargon,

but in terms which relate directly to the manufacturing context. In this way, we can

make the capabilities of simulation accessible and understandable to an audience

which might not otherwise be interested in or able to take advantage of them.

In addition to these methods of making the analytical techniques available to

managers, the POA has features which help people to use the system itself. For

-" example, there is an extensive scenario management system which lets users create,

store, and compare a variety of assumptions about the factory.

.3.
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and other Operations Research tools to -.
help manufacturing managers. "N

The POA is a composite expert system. The system makes limited use of production

rules for some functions, such as consistency checking, but it relies mainly on other Al

technologies such as model-based reasoning, object-oriented programming,

goal-directed control, plans, and constraint-based inference. Palladian takes ... -

advantage of these technologies to accomplish our goal of creating a high value ;

system to make the techniques of management science available to everyday

managers.
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APPLICATION OF THE BUTTERFLY PARALLEL PROCESSOR

TO THE SIMULATION AND CONTROL OF COMPLEX SYSTEMS
'.€',,, . a..

"a'" David M. Fram-
***i a

BBN Laboratories Incorporated
Cambridge, MA 02238 " . - .

"@,.9. ." a

-- The Butterfly Parallel Processor is composed of processors with memory and a
multistage switching network that interconnects the processors. A Butterfly
system can be configured with from I to 256 Processor Nodes. Each Processor

Node consists of a processor, memory, and an interface to the switch.
Collectively, the memory of the Processor Nodes forms the shared memory of the
machine. All memory is local to 'some Processor Node; however each processor
can access any of the memory in the machine, using the Butterfly Switch -

to make remote references. (From the point of view of an application program,
the only difference between memory on its local Processor Node and memory
on other Processor Nodes is that references to remote memory take a little .-,

longer to complete.) The speeds of the processors, memories, and switch are *"Y,-

belanced to permit the system to work efficiently in a wide range of

configurations.

Each Butterfly Processor Node contains a Motorola MC68000 microprocessor (or a
MC68020 with MC68881 floating point co-processor), at least 1 megabyte of main

memory, memory management hardware, an I/O bus, and an interface to the
Butterfly Switch. I/O connections can be made to each Processor Node, making
1/0 configuration very flexible.

The Butterfly Parallel Processor can be programmed in C. Fortran, and

multi-processor Lisp. An Expert System environment is currently being a, -

developed on top of the Lisp.

Developed as a research vehicle under sponsorship of the Defense Advanced
Research Projects Agency, Butterfly by now represents a capable parallel
processing technology suitable for wider commercial use as well. In
considering commercial product directions for the Butterfly Parallel Processor,
BBN is currently focusing on two major application domains: I) simulations of

complex systems; and 2) ambitious real-time systems for monitoring and control.
In the remainder of this abstract, we describe these domains further and

explain how the Butterfly architecture is well suited to them.

As physical systems grow ever more complex, simulation is becoming

more and more important as a means of gaining insight into the -.

behavior of these systems under both normal and abnormal conditions.
Simulation can have very high economic value, as when it alleviates ,

the need to build and test prototypes. Simulation can also make it ,.
possible to explore scenarios that would be impractical to carry out

in the real world, such as simulating the results of placing an .. _

overload on an electrical network.

In addressing the simulation market with Butterfly, BBN will concentrate on
. applications that exhibit one or more of the following characteristics.

the system being simulated is large and complex; or

the component elements of the simulation have a direct physical ..
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interpretation and are individually complicated. (For example, .

in a battle simulation, the elements might be the ships, planes, .-

and submarines taking part in the battle. In a chemical plant
simulation, the elements would be the various pieces of equipment%
in the plant.); or

there is a demanding real-time requirement on the simulation.

* Applications exhibiting these characteristics map extremely well
onto the Butterfly architecture. Large, complex systems can make good
use of the Butterfly's large amount of memory and shared memory
architecture. Systems involving identifiable component elements
parallelize easily; one simple conceptual model that can be
applied is that each physical element is represented by a different.. *

processor in the machine. Simulations with real-time requirements
benefit directly from the ability to scale up to a very large number of

* processors; performance can be guaranteed by allocating a sufficient.
number of processors to the problem.

The second targeted application area is sophisticated real-time monitoring and

control. An illustrative example is a satellite control facility under -

development by a major aerospace contractor. This system will monitor%
telemetry data from satellites, and will use a combination of artifical * .e
intelligence and simulation to permit system operators to analyze and control "

the internal systems in the satellite. The ability to handle high-speed input, N
to combine artificial intelligence with conventional programming, and to be *-

able to scale the system up to provide real-time response are all important.'
%"'op

% The Butterfly offers significant advantages for performing applications in
this area:Z_

* . The applications frequently interact with the real world with tight time 'N

%constraints, and the Butterfly architecture and operating system are ,

well-suited to maintaining guaranteed real-time response. -

The applications tend to be I/O-intensive as well as compute-intensive, 4
and the Butterfly's I/O bandwidth can be incrementally expanded to very
high levels.

The applications typically require a mix of real-time processing, numeric
processing, and symbolic processing; the Butterfly is perhaps the only '
existing parallel processor that can support computing environments
appropriate to all of these.

The areas just described--complex system simulation and large-scale integrated
systems for monitoring and control--are closely inter-related. In developing a
large-scale control system, simulation is often required as a technique for
understanding the system to be controlled and for testing and validating the
resulting control system. In operating a large-scale control system,
simulation is often used as a technique for predicting the likely outcome of

*some contemplated control action. For example, in a plant control application,
in order to decide upon the optimal control strategy under a given set of

*conditions, it might be reasonable to "try out" several different strategies in
a simulated mode to see which strategy produces the best results. For this to
be useful, the simulations must be highly accurate (the underlying models must *~

be complex enough to capture what really happens) and they must run fast enough
so that a number of di f ferent s imul at ionsO can be carr ied out i n the t ime
allotted for making a decision. The requirement to have complex models that '%%.

run extremely rapidly places demanding performance requirements on the
simulation system and motivates the use of parallel processing techniques.,*,.
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1. Introduction 
User

Design and use of simulation models for
complex industrial plants is a demanding and
time-consuming task, requiring extensive U I
knowledge of both the plant and the simulation User Interface -.
system. While the basic principles and tools for
process flowsheeting (calculation of steady-state
heat and material balances in chemical Design ,.
processes) are well understood (e.g. [1]), there is Functions

definite need for improved man-machine Knowledge .
interfaces and support systems for exploiting the Bases
powerful flowsheet simulator programs now ""Process
available. 

M .odels
This article describes a project that develops an
intelligent frontend for the PROCESS flowsheet
program [2]. The KiPS frontend
(Knowledgebased Interface to Process PROCESS
Simulation) is being implemented using Loops.
The project is conducted under a contract with Figure 1. KIPS main modules
Statoil, Den norske stats oljeselskap A/S. from, and displayed to the user graphically as
The work pattern with KIPS will look as follows, process flow diagrams, and converted to text

Th okptenwt ISwl oka olw. form for PROCESS. ,..The engineer with some initial design ideas
starts by translating these into a flowsheet on 2. The process models are created and
the graphics screen of the KIPS workstation. The manipulated through a number of interactive
design work is supported by knowledge Design Functions. Foremost among these are

Le' embedded in the KIPS database, which contains a graphical editor for flow diagrams and a
basic building blocks and model (sub)assemblies, PROCESS input file generator.
as well as design rules. As soon as the model has 3. The design work is supported by one or more
been constructed in an interactive session, the 3. wTh e aseo s where by one pts
corresponding input file is automatically Knowledge Base(s), where PROCESS concepts
generated and sent to PROCESS for execution. and previously acquired model components, ...

The advantages are: design rules, etc. are encoded.

0. • The knowledge involved in designing a model 4. The user gains access to the remainder of the._ -0is shared between the engineer and the system through a uniform User Interface,issardbtwe heegieran"h inspired by the Xerox Star [3] design. .1
system. KIPS may serve as a repository for nsiebyteXrxSa(3dsg.
good design practise, and for accumulating The knowledge base is a major focus for this
experience. work. Constructing a PROCESS model is largely

, The engineer is freed from manual handling seen as copying pieces of information from the
of drawings, preparation of detailed input knowledge base into the evolving model, then

files, etc., and may concentrate on high-level modifying the pieces to suit the current needs
issues of flowsheet design instead. The user This instantiation of general descriptions to

interacts with the system in terms of familiar particular instances is accompanied by activation
process symbols. of design rules for checking the validity of user2.oSs structur actions, providing advice upon request, or

2. System structure automatically filling in parts of the model.

The four major components of KIPS, as shown in 3. Knowledge base
Figure 1, are: The "backbone" of the KIPS knowledge base is a

1. The objective of the system is to support class hierarchy defining model components and
design of Process Models, which are input topology, augmented with rule sets as described

..-.........- ... ........ .............. ......................... .......................-......-.... .... .



in more detail below. Figure 2 depicts a central
fragment of the class structure: rNst -f t ".w%.

ModelObject I:,
I ' , ,,

Stream Port El ement ~!!fi,-

Unit SubModel / .C m

Compressor HeatExchanger ... . -,s ,,,i.,...,,A -1..W--,,,., .-. ."%".%.
obiectg~n taxonomy 11Figure2. Model object taxonomy %

A model contains zero or more ModelObjects. starEach ModelObject is either an Element, a Port or\ ,,,, .-.... :

a Stream. The Element is a general class, with -
subclasses SubModel (i.e. a submodel with its
own internal structure), or a basic Unit, of which -.... "
Compressor, HeatExchanger, etc. are specific /P subclasses. The units (e.g. Compressor) may m - ,._
spawn further subclass definitions, /-"

corresponding to particular ways of using these'"
units (based on experience). Figure 3 shows PfowtyW,"t
some of the currently defined PROCESS units. V_.....
The inclusion of both SubModel and Unit as \ ,s, U,

building-blocks in models means that fully ,,wf"..,
recursive structures are possible. ,_,__ -____._
Each unit has a number of parameters that can --. ,

be specified to PROCESS. Each parameter is Figure3. PROCESS unit taxonomy
described by an IV having a number of
properties: 4W#

number, t advice method for advising the user on how
type preter typne. to select a new value ,-. -.
reference to unit, etc.

default default parameter value The rulesets are activated as side-effects of
unit the engineering unit in which a reading and updating the parameter value:

numerical parameter is given 0 Before an attempted update of a parameter
range minimum/maximum values,-. .-
vages inimumlax values value, a check method runs, and if the value is

il values list of legal values
reason why does the parameter have its invalid, an error message is displayed to the

current value (a text) user.
etc. 0 The user may ask the system for advice about

how to specify a parameter value. A methodA specification of a unit is defined as a particular aowite ith t parameter l th beassociated with the parameter will then be-"-.
way of using that unit, minimally defined by
partitioning the set of parameters for the unit activated.

into required, optional, special, fixed and 0 If a parameter has no specified value, a get.
unused parameters. The specification of a unit function will be activated which will look for a
may change during a session, and the system will default value, when needed. - -

change its behaviour with respect to that unit Al programmers will recognize this schema as an •.- .
example of the use of 'demons* in frame

We now describe a common framework for systems.I. *r

constructing (usually small) rule sets associated Given the facilities described above, knowledge
with particular parameters. Each unit parameter programming' [41 in KIPS takes two principal -'
description may have associated ruleset methods
of the following kinds: forms:

0 Refinements of the classification hierarchy,check method for checking validity of a ,,',
proposed new value e.g. defining subclasses of an existing unit

prop d,... ale. .
• " -" - • " '' '-," " " ''/ '"~~~~~~- . .. .. .. . .•" "-" " '." ". % - - " - - "- - "- " "- -'- -". I



class to capture different idiomatic uses of A new unit or submodel is placed in a flowsheet
that unit. by pointing to its name in a knowledge base, and

0 Definition of rulesets associated with then point to a location in the flowsheet where
particular parameters. In the KIPS system, the element should be placed.The unit is moved
there are hundreds of such rulesets, each around by animation. Then, parameters may be
typically containing less than ten rules. filled in (via 'pop-up' menus), and the element

connected to other flowsheet elements by "
The maintenance of the knowledge base should cnetdt te lwhe lmnsbnTe leften e to the sersebt bse ustd a pointing. The rulesets come into action during *

nowbelege baste srsbubentratoru(wte a this process, as described earlier. Finally, a menu . , _

same time be a user). Figure 4 illustrates the attached to the flowsheet may be activated for r.j
fudametbal wo r .cycl e Kilusrts bl producing hardcopy output or generate an inputfundamental work cycle of KIPS : Users build file for PROCESS. !'
process models by instantiating knowledge base , _
entities, while the knowledge base Hierarchical design is a most important aspect of .
administrator inputs basic PROCESS definitions, design processes, and is supported by the
as well as generalizes particular models (model general model structure shown in the previous
elements) into the knowledge base. section. Functions for creating submodels, zoom

in on the internal structure of submodels, etc.
Input/revise are available to the user. We believe this is a

(Loops editor) fundamental requirement for any system .0-
purporting to support design in a complex
domain, such as simulation modelling.

5. Current Status
Today, in early may 1986, a prototype of KIPS is
in use by the research and development

Knowledge department at Statoil, mainly for demonstration
and testing purposes.

A The graphical flowsheet editor is operational
Instantiate Generalize but further enhancements are under

development.
0 PROCESS units regarded as relevant for

Process offshore simulations have been implemented.

Models 0 PROCESS is a sequential simulation program
and a precedence ordering is suggested to the

0 An input file is automatically generated and

transmitted to a host computer (an IBM main
frame) and the simulation results are

Revise transmitted back to the Xerox workstation.
(Flowsheet editor)

Figure 4. Knowledge
instantiation/generalization 6. Further work

A major motivation behind the KIPS project is
4. User interaction finding ways of including design knowledge in

the intelligent interface to PROCESS. This is
When a user starts up the KIPS system, the screen
will contain a number of small icons (3] clearly a vast topic, and we have chosen to.NOW
representing knowledge bases and flowsheets. '.',,
By pointing at an icon with the mouse and One way of viewing the organisation of process -i- -

clicking a mouse button, the icon will open up to modelling knowledge is related to the
reveal its contents. Knowledge bases are hierarchical structure of models:
displayed as LOOPS classification graphs, while Process structuringProcesset aruern digrm cloel resmbin
flowsheets are diagrams closely resembling On the highest level, the overall structure of
those used by process engineers. Figure 5 shows the process is selected Relevant constraints
a snapshot of the KIPS screen as it might appear a h l e s( i rare the goals of the process (e.g. in terms of
to an engineer designing a PROCESS model. external feed/product propertie:), previous

design experience, safety standards, etc.

-.......-



Submodellunit selection
Given the overall model structure, the next References I
step in the refinement is to choose particular ,
submodels/units to fill the structure. [1 A.W. Westerberg et al. Process

Flowsheeting, Cambridge University Press, %. ,-'Parameter selection %t- ~
Finally, the parameter values of the individual 1979%
units must be set so as to achieve the desired [2] N.F. Brannock et al. PROCESSSM
role of the unit in the overall process. Simulation Program, A Comprehensive -

Logically, the design should proceed top-down, Flowsheeting Tool for Chemical Engineers,
and the reasons for decisions at different levels Computers & Chemical Engineering, Vol.
should be maintained for later project phases. , p - 1979. .-'. . ' ,

Unfortunately, this is seldom carried out in [31 D. C. Smith et al. : Designing the Star User -
practise, thereby losing a major source for Interface, BYTE, April 1982.
making informed model revisions. (41 M. Stefik et al.: Knowledge Programming .

Another possible direction for the KIPS project is in Loops, Al Magazine, Fall 1983.
to extend the present concentration on the ... ,..

to xted te peset cncetraionon he [51 T.Gundersen & T Hertzberg: Partitioning
model design aspect to also include other phases anderin o Netor- ppitoof simuation poje~s:and Tearing of Networks - Applied to -:

of simulation projects: Process Flowsheeting, Model,
* Planning (sequences of) simulation Identification and Control, 1983, 139 - 165.

experiments to achieve given project goals. [6] T.Gundersen & T. Hertzberg: Notat:

" "Qualititative"/coarse simulation in the Beregnings-rekkefolge og tearing,
frontend to weed out first-line problems. Trondheim, 1984.

* Fault diagnosis of simulation if the result are l ,
wrong or non-satisfactory.

" Evaluation, interpretation and presentation '-" .-..

of the simulation results.

r67
S.... **.... "6" ,\: 2' "K

Figure 5. KIPS screen snapshot
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THE ANALOGICAL REPRESENTATION OF LIQUIDS IN NAIVE PHYSICS

Francesco Gardin*,**, Bernard Meltzer*, Paolo Stofella*,**
*Al & Robotics Laboratory, JRC-Ispra, 21020 Ispra, Italy

** Dipartimento di Scienze dell'Informazione, UniversitA degli ,
Studi di Milano, Via Moretto da Brescia, 20100 Milano, Italy

Abstract

The modelling of our intuitive knowledge of. everyday physical behaviour of liquids is unlikely to
be successfully achieved by the use either of classical hydrodynamics or current qualitative - __
reasoning approaches. The use of analogical representations for the purpose has been studied, in
which liquids are represented as composed of base elements of pixel aggregates of a graphics
system. Computationally speaking these "molecules" are actors, the intuition of causality being
realized in the constraint that only adjacent ones can exchange messages. Eight rules (embodying
fundamental properties of fluidity, gravity and causality) which govern these exchanges suffice for
the generation of qualitatively correct behaviours in a wide variety of situations. Limitations of the
present stage of development of the model, and issues involved in incorporating such models in
problem-solving systems are briefly referred to.

1. Analogical representation

The results to be reported here are part of an ongoing investigation of the use of analogical -
representations in modelling naive physics (Gambarella et al. 1986). What one is looking for
are computational models of the everyday behaviour of liquids familiar to everybody, such as:
what happens when a glass of water is tilted, how the level of water changes when it is poured into
a container, how the water would spread on the floor if the bucket leaked, splashing, and so on.
It seems unlikely that much success would be achieved if one tried to design such models on the -
basis of the equations of classical hydrodynamics (Feynman 63). Not only because of the -.-
extreme complexity of such equations and their boundary conditions in non-trivial situations, but
also for other reasons : Firstly the concepts and terms used in such representations are far removed
from notions used in commonsense reasoning, such as : assuming the shape of a container, being
contained by, dropping, splashing, etc. Secondly, the behaviours predicted by such models are far
more quantitatively detailed than the rough estimates that suffice for normal everyday and
engineering use, and in addition it is often very difficult to extract from such "exact" solutions
intuitively simple properties of the behaviour.
In recent years therefore studies have been initiated in the field of qualitative physics aimed at .- -.
developing more suitable models of our intuitive knowledge of the physical world ((Bobrov 84)
and for liquids (Hayes 79b), (Forbus 84)). The cited studies on liquids are fragmentary
attempts to axiomatize such knowledge, without however having reached the point of
implementation in programs. It is difficult to predict how successful such an approach may be, but
one or two remarks are in order. One's impression is that a reasonably complete axiomatization
would be very large indeed, and its implementation in programs would come up against all the
usual control problems of systems of deductive inference as well as the frame problem (Hayes
73). Also, as pointed out by Sloman (Sloman 84) such formalisms involve strong ontological
commitments, that is, fixed choices of entities and concepts to be represented.
Both of the representation schemes discussed above are of the type Sloman (Sloman 71) termed ... .... ,
Fregean. In Fregean representations everything, essentially, is represented in terms of one basic "
structure, namely the application of a function symbol to one or more argument symbols, whatever ..- -.-.- :.

Sp• °.- ,
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may be the subject matter • predicate logic is of course the paradigm example, but much of
mathematical, computing and natural languages is also of this type. This means that in such cases
there is no or little structural similarity between the representation and what is represented.
Representational schemes in which such structural similarity predominates were termed
"analogical" by Sloman (Sloman 71). Examples are maps, diagrams, flow-charts.
The analogical representation of liquids used in the present work is a two-dimcnsiumal one taking.
the form of sets of pixels of the two-dimensional array of a computer graphics system (The issues ,., ,..
of three-dimensional modelling have not yet been taken up, though they do niot secia to be "
fundamentally different from those studied). In this way spatial properties and relations of the
liquid systems are already implicit in the model itself. It will be seen that the operatioas r,_quircd to
give qualitatively correct behaviour of the liquid model are relatively few and simp~e.

. "pK~

2. The methodology used

Since in the ordinary behaviour of liquids different parts of a given mass of it have different
motions, our representation evidently must make use of decomposition, that is, tke v.hole mass is
represented as the sum of its component parts. And since we do not know in .dvance at what
point in the liquid mass this differentiation of states of motion will occur, we are compelled in our
analogical representation to choose some basic grain size for the decomposition. That is to say, our
model, graphically speaking, will be a configuration of identical basic elements, eacih of which is
an aggregate of pixels, of some convenient shape, e.g. circular or square. The basic oper:- ions of
the miodel then will be on these elementary "molecules".
Next, in accordance with our intuitive notions of causality, we limit direct interactions between
molecules entirely to those between spatially adjacent ones. Thus all the rules of belaviour will b" "
local ones, whose joint operation gives rise to the global behaviours. Quite apart fromu the question
of causality, it is probable that if we had tried to develop a system of global rules in.ead, it would
have been overly complex both in respect of its size and of the conditions to be at:ached to each.= "
rule, to cope with the great variety of macroscopic behaviours possible.
These two requirements of molecular decomposition and localness of rules almos, d-t,:rmine the
appropriate style of programming to be used. That is to say, the molecules, conmputitionally
speaking, will be actors, with adjacent ones interacting by exchance of messages, such exchanges
of course also occurring with pixel actors of the environment like those
in the representation of containers.
And indeed with the availability of a Symbolics 3600 Lisp machine with its "flavour" actor
facilities, this object-oriented programming style was chosen, also because of its architectural
similarity to the operation of massively parallel computers (Hills 85), which, when they become . "
available, will be the ones most suitable for implementing analogical representations.

3. Rules of liquid behaviour

Analogical models of physical systems may be used for various purposes, such as
envisionmentoftheir functioning, planning, looking retrospectively at their cehaviour in
fault-tracing, as psychological mental models, as components of explan:,tion sysens, !s parts of
problem-solving systems, etc., but central to the applications is their capacity for 'inlul:ttion of
behaviour, and it is on this aspect that this research has been concentrated.
In the following summary of the local rules which govern the exchange of messigcs between
adjacent actor molecules, we term a molecule free if the space immediately underncath it is not %
occupied, and constrained otherwise. N.

1 A molecule can change its position to a neighbouring one if that one is not occupied by either
another molecule or a rigid body (Non-copenetrability) .

molecule can receive messages and pass them on to its neighbours (Causal transmission)
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3 A free molecule moves down until either it encounters another molecule or a rigid body • in both
cases it becomes constrained (Gravity)
4 A constrained molecule can move in any direction only if so requested from one of its .
neighbours (Fluidity)
5 A constrained molecule becomes free if the space underneath ceases to be occupied either by
another molecule or a rigid body (Fluidity)
6 If a free molecule during its fall encounters a constrained molecule, before bccoming constrained
it will try to occupy its space (Fluidity)
7 A constrained molecule which has received a request for space will try to fulfil this request by
attempting to occupy another position in its neighbourhood. If no space is already available it will
pass on the request. If no position can be made available it will fail (Fluidity)
8 No position can be occupied above the level of a free molecule which started a request for space
(Gravity) -'. -

4. Experimental results

The program incorporating these rules gave qualitatively correct simulations of liquid behaviour in
a wide variety of situations such as the filling of a container from a tap, leaking friom a hole in a
container, finding its own level, etc.

c 2£ By way of illustration Figuies la to le show the filling of a gias by liquid poured from a bottle. A
Figures 2a to 2d show a complex of communicating vessels being filled, and suscquently leaking
.,hrough a hole in a wall of a container, into a larger container underneath.
The notion of "qualitatively correct" is not a precise one, being based on the judgnent of the '
observer. However, since essentially we are concerned with modelling perceptions and knowledge
of a (competent) observer about physical phenomena, such imprecision needs to be tolerated - for
the present, since it is possible that in the future development of naive physics raore precise 9
concepts using Hayes' (Hayes 79a) notion of quantity space may emerge.

5. Discussion

The model developed so far is essentially a kinematic one,though it encompasses dynamic
phenomena like falling under gravity and some of the effects of pressure. It is an open question
how far the kinematic approach will carry one when trying to extend the model to deal with a larger
range of situations. For instance the present model does not cover splashing, because as yet we

.- -" have not developed a satisfying way of representing the effects of momentum. An associated open
question is the degree of explicitness with which time should be represented.
Analogical representation is applicable not only to modelling physical processes but also to using .
such models for problem-solving. For instance, a robot waiter that has to serve drinks could have
in its planning program such a representation (cf. Figure 1) of glass and bottle, arid so find how
much to tilt the bottle in the space above the glass.

O However, the question of including analogical models in an integrated autonomous '-"

problem-solving or reasoning system involves confronting important issues like iivcrpret:tion, O go
generality and the representation of analogical heuristics, which are discussed in (C;tnh :rdella
et al. 86).
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KNOWLEDGE-BASED SIMULATION ENVIRONMENTS FOR DYNAMIC SYSTEMS
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Nokia Corporation, R&D Engineering-Economic Systems .

P.O. Box 780 Stanford University

SF-00101 Helsinki Stanford, California 94305

FINLAND U.S.A. -

In the field of mathematical systems analysis there is a long

tradition of analyzing dynamic systems via difference and diffe- -

rential equations (Luenberger 1979). This analysis has concent-

rated on solving for equilibria and on the stability properties

of linear systems and of a few special cases of nonlinear sys-

tos. Most problems that are of practical interest are in comp-

lax ways nonlinear and the properties that one wishes to analyze -

are often of transient nature. To analyze nonlinear systems and -
transient phenomena numerical computer simulations are often the

only possibility. When the problem has a unique and well known

mathematical structure traditional simulation tools are suffi- .
cient. In many situations, especially when analyzing poorly

understood phenomena, the structure of the model to be analyzed

is not predefined. Rather the purpose of the simulation is to
experimentally arrive at a good model of a complex system and to

perform a wide variety of parametric analyses. For these kind of

situations the traditional simulation tools do not provide

sufficient support. .".,

Our research has concentraded on developing Al-based simulation
tools that form an integrated environment for supporting explo-
rative and experimental, analyses of difference equations. .5.

In already completed research (Lounamaa, 1985, Lounamaa and Tee,
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1986a) we have developed a Simulation and Expert Environment P

(SEE) that combines object-oriented programming and rule-based

reasoning with various simulation facilities such as repeated .. .

execution, noise generation, result storage, plotting and para-

metric analyses. The features of lisp has been used extensively
• ; . ..

to provide a powerful and easy to use modeling environment. One "" -

may interactively use lisp expressions with the variables refe-
ring to columns in result tables to select simulation results

for display and analyses. One can trace the simulation in vari-

.9 ous ways.

SEE has been used to analyze a complex non-linear problem: the . .

adaptive control of a team consisting of learning members within

a noisy environment. This class of problems has been analyzed in

the literature but only with strong mathematical assumptions. We

wanted to start from behaviorally plausible decisionmaking and .

learning assumptions and thus be able to provide new, behavio- 4
rally meaningful, insights to this class of problems. After

extensive analyses with a wide variety of alternative formulati- 4 "

ons and parametric analyses using SEE we have arrived at results

that could not have been even anticipated without the help of a

tool like SEE (Lounamaa and March, 1986).

The important conclusions with respect to AI-tools are that

object-orientation is a powerful unifying framework in the ', ,
modeling process and that rule-based reasoning had relatively

- little to contribute in this class of problems. Object orienta-

tion naturally leads to what we feel to be good modeling prin- ."- "'% -

ciples. First, one defines that abstract logical model that one

wants to analyze by defining the sequence of messages to be

sent. Second, one defines the detailed behavior of the objects,

that is the responses to the messages. The analysis then con-
sists of changing the behavioral assumptions of the objects . -'-

while keeping the logical structure unchanged. This modelingNI
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process is managed by defining a nflv object class for each new

behavioral assumption. In this way one can first of all keep

track of the various assumptions analyzed and secondly easily

switch between the assumptions by changing the simulated ob-

jects. Various ways of integrating rule-based reasoning with
object-oriented modeling were studied. In the class of problem -
studied we did, however, not find any uses of (unification
based) rule-based reasoning in which its inherent inefficiency
would be justified. For instance, behavioral assumptions were
more productively expressed as methods of objects.

SEE is a fully working modeling tool prototype that has been
used to obtain substantive results. It is, however, implemented
in MACLISP and GLISP (Novak 1982) in a timesharing environment
and thus is both inefficient and lacks important user interface
functionalities. The next generation modeling environment should
be implemented in a lisp workstation.

;-..-......

Our current research is focused on defining a new and powerful
knowledge-representation formalism for simulating dynamic sys- .
tems (Lounamaa and Toe, 1986b). This formalism is based on
object-orientation and on including semantic knowledge of the
class of problems that the representation should be able to "-
describe, namely difference equations of arbitrary complexity,

The key mathematical notions that the representation treats
semantically correct are state-variables, dependent variables,

parameters, difference equations and index sets. The resulting , -;

knowledge-representation formalism does not end up talking

purely about these mathematical notions but rather a mixture of
mathematical notions and Al based notions such object classes, .

V5 object instances, inheritance, objects "known by" other c 'acts
and rules attached to objects. In a complete simulation e. ,P-

ment a graphical user interface based on mouse control and

.- ...... .. .4
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up menus again transforms the vay a modeller thinks about and

models dynamic systems. This transformation requires further

experimental research.
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